
Chapter 21
Discrete-Event Systems in a Dioid Framework:
Modeling and Analysis

Thomas Brunsch, Jörg Raisch, Laurent Hardouin, and Olivier Boutin

21.1 Timed Event Graphs

As discussed in the previous chapters, a Petri net graph is a directed bipartite graph
N = (P,T,A,w), where P = {p1, . . . , pn} is the finite set of places, T = {t1, . . . , tm}
is the (finite) set of transitions, A⊆ (P×T )∪(T ×P) is the set of directed arcs from
places to transitions and from transitions to places, and w : A→N is a weight func-
tion. Note that this notation differs slightly from the notation introduced in Part II
of this book. However, for the description of timed event graphs, i.e., a specific type
of Petri nets, our notation is very convenient. In the sequel, the following notation
is used for Petri net graphs:

•t j := {pi ∈ P |(pi, t j) ∈ A}

Thomas Brunsch · Jörg Raisch
Technische Universität Berlin, Fachgebiet Regelungssysteme, Einsteinufer 17,
10587 Berlin, Germany
e-mail: {brunsch,raisch}@control.tu-berlin.de
Jörg Raisch
Fachgruppe System- und Regelungstheorie,
Max-Planck-Institut für Dynamik komplexer technischer Systeme,
Sandtorstr. 1, 39106 Magdeburg, Germany

Laurent Hardouin · Thomas Brunsch
LUNAM, University of Angers, LISA, ISTIA, 62 Av. Notre-Dame du Lac,
49000 Angers, France
e-mail: laurent.hardouin@istia.univ-angers.fr

Olivier Boutin
Calle Santiago 2 – 4oC, 11005 Cadiz, Spain
e-mail: olivier.research@gmail.com

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 431–450.
springerlink.com c© Springer-Verlag London 2013



432 T. Brunsch et al.

is the set of all input places for transition t j, i.e., the set of places with arcs to t j.

t j
• := {pi ∈ P |(t j , pi) ∈ A}

denotes the set of all output places for transition t j, i.e., the set of places with arcs
from t j. Similarly,

•pi := {t j ∈ T |(t j , pi) ∈ A}

is the set of all input transitions for place pi, i.e., the set of transitions with arcs to
pi, and

pi
• := {t j ∈ T |(pi, t j) ∈ A}

denotes the set of all output transitions for place pi, i.e., the set of transitions with
arcs from pi. Obviously, pi ∈ •t j if and only if t j ∈ pi

•, and t j ∈ •pi if and only
if pi ∈ t j

•. Graphically, places are shown as circles, transitions as bars, and arcs as
arrows. The number attached to an arrow is the weight of the corresponding arc.
Usually, weights are only shown explicitly if they are different from one.

A Petri net system (or Petri net) is a pair (N,mmm0), where N = (P,T,A,w) is a
Petri net graph and mmm0 ∈Nn

0 with n = |P| is a vector of initial markings. In graphical
representations, the vector of initial markings is shown by m0

i dots (“tokens”) within
the circles representing places pi, i = 1, . . . ,n. A Petri net can be interpreted as a
dynamical system with a state signal mmm : N0→ N

n
0 and an initial state mmm(0) = mmm0.

Its dynamics is governed by two rules, also called firing rules:

(i) In state mmm(k), a transition t j can occur (or “fire”) if and only if all of its in-
put places contain at least as many tokens as the weight of the arc from the
respective place to the transition t j, i.e., if

mi(k) ≥ w(pi, t j),∀pi ∈ •t j.

(ii) If a transition t j fires, the number of tokens in all its input places is decreased
by the weight of the arc connecting the respective place to the transition t j , and
the number of tokens in all its output places is increased by the weight of the
arc connecting t j to the respective place, i.e., the state changes according to

mi(k+ 1) = mi(k)−w(pi, t j)+w(t j, pi), i = 1, . . . ,n,

where mi(k) and mi(k+ 1) represent the numbers of tokens in place pi before
and after the firing of transition t j.

Note that a place can simultaneously be an element of •t j and t j
•. Hence the number

of tokens in a certain place can appear in the firing condition for a transition whilst
being unaffected by the actual firing. It should also be noted that a transition enabled
to fire might not actually do so. In fact, it is well possible that, in a certain state,
several transitions are enabled simultaneously, and that the firing of one of them
will disable the other ones.
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A Petri net (N,mmm0) is called an event graph (or synchronization graph), if each
place has exactly one input transition and one output transition, i.e.,

|•pi|= |pi
•|= 1,∀pi ∈ P,

and if all arcs have weight 1. It is obvious that an event graph cannot model conflicts
or decisions, but it does model synchronization effects. A small example of an event
graph is given in Fig. 21.1.

Fig. 21.1 Example of an event graph

A standard Petri net (N,mmm0) only models the ordering of firings of transitions,
but not the actual firing times. However, it is possible to “attach” timing informa-
tion to the “logical” DES model (N,mmm0). This can be done in two ways: time can
be associated with transitions (representing transition delays) or with places (repre-
senting holding times). In timed event graphs (TEG), transition delays can always
be transposed into holding times by simply shifting each transition delay to all in-
put places of the corresponding transition. However, it is in general not possible to
convert holding times into transition delays. Therefore, we will only consider timed
event graphs with holding times. In TEG with holding times, tokens in place pi have
to be held for a certain time (called “holding time”) before they can contribute to
the firing of the output transition of pi. The holding time for a token in place pi is
denoted vi.

Figure 21.2 shows a part of a general timed event graph with holding times. In
general, the earliest time instant when place pi receives its kth token is denoted πi(k),

pitr t j

vi

Fig. 21.2 Part of a general timed event graph with holding times
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and τ j(k) denotes the earliest time instant when transition t j can fire for the kth time.
Then the earliest time of the kth firing of transition t j can be determined by

τ j(k) = max
pi∈•t j

(πi(k)+ vi),

i.e., a transition is enabled to fire as soon as all input places of this transition have
received their kth token and their corresponding holding times have elapsed. Sim-
ilarly, the earliest time instant when place pi receives its (k +m0

i )
th token can be

determined by the kth firing of its input transition, i.e., πi(k+m0
i ) = τr(k), tr ∈ •pi.

Note that a place in an event graph has exactly one input transition and consequently,
the place can only receive tokens when this input transition fires. Therefore, it is pos-
sible to eliminate the πi to give recursive equations for the (earliest) firing times of
transitions.

21.2 Motivational Example

From the previous section, it is clear that it is possible to recursively compute the
earliest possible firing times for transitions in timed event graphs. In the correspond-
ing equations, two operations were needed: maximization and addition. To illustrate
this, a small example (taken from Cassandras, Lafortune & Olsder [4]) is used.
Imagine a simple public transportation system consisting of three lines: an inner
loop and two outer loops. There are two stations where passengers can change lines,
and four rail tracks connecting the stations. The basic structure of the system is given
in Fig. 21.3. Initially, it is assumed that the train company operates one train on each
track. A train needs 3 units of time to travel from station 1 to station 2, 5 units of
time for the track from station 2 to station 1, and 2 and 3 units of time for the outer
loops, respectively. The aim is to implement a user-friendly policy where trains wait
for each other at the stations to allow passengers to change lines without delay, i.e.,
the departure times of trains from stations shall be synchronized. This can be easily
represented in a timed event graph with holding times (see Fig. 21.4). The tokens

travel time: 2 travel time: 5

travel time: 3 travel time: 3

Station 1 Station 2

Fig. 21.3 Simple transportation network taken from [4]
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p2
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t1

5

t2

p1

2

Fig. 21.4 Timed event graph of the transportation network

in places p1 to p4 model trains on the tracks and the holding times are the traveling
times for trains on the tracks. The firing times of transitions t1 and t2 represent the
departure times of the trains in stations 1 and 2, respectively. These times can there-
fore be interpreted as the “time table” for the simple public transportation system.
The recursive equations for the firing times of transitions t1 and t2 are

τ1(k) = max(π1(k)+ 2,π4(k)+ 5)

τ2(k) = max(π2(k)+ 3,π3(k)+ 3)
(21.1)

and

π1(k+m0
1) = π1(k+ 1) = τ1(k) (21.2)

π2(k+m0
2) = π2(k+ 1) = τ1(k) (21.3)

π3(k+m0
3) = π3(k+ 1) = τ2(k) (21.4)

π4(k+m0
4) = π4(k+ 1) = τ2(k). (21.5)

Inserting (21.2)–(21.5) into (21.1), it is possible to eliminate πi(k)

τ1(k+ 1) =max
(
τ1(k)+ 2,τ2(k)+ 5

)

τ2(k+ 1) =max
(
τ1(k)+ 3,τ2(k)+ 3

)
.

(21.6)

Now, given initial firing times, i.e., the first departures of trains, τ1(1) = τ2(1) = 0,
the timetable can be determined as follows:

[
0
0

]

,

[
5
3

]

,

[
8
8

]

,

[
13
11

]

,

[
16
16

]

, · · ·

If the initial departure times are chosen to be τ1(1) = 1 and τ2(1) = 0, the sequence
is

[
1
0

]

,

[
5
4

]

,

[
9
8

]

,

[
13
12

]

,

[
17
16

]

, · · ·
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In both cases the average departure interval is 4 units of time, however, in the second
case the departure interval is constant, i.e., the system has a so-called 1-periodic
behavior, while in the first case the system shows a 2-periodic behavior.

Eventually, the train company may consider to realize shorter (average) depar-
ture intervals. This could be achieved by using additional trains. For example the
company provides a second train in the inner loop, e.g., initially on the track from
station 1 to station 2. With respect to the timed event graph shown in Fig. 21.4, this
means to add a second token in place p2. In this case the firing times of transitions t1
and t2 as functions of πi (Eq. 21.1) do not change, but the time instants when places
pi receive their tokens change to

π1(k+ 1) = τ1(k) (21.7)

π2(k+ 2) = τ1(k) (21.8)

π3(k+ 1) = τ2(k) (21.9)

π4(k+ 1) = τ2(k). (21.10)

Therefore the recursive equations for the firing times τ1 and τ2 change to

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)
(21.11)

τ2(k+ 2) = max
(
τ1(k)+ 3,τ2(k+ 1)+ 3

)
. (21.12)

By introducing a new variable τ3, with τ3(k+1) := τ1(k), one may transform (21.11)
and (21.12) into a system of first-order difference equations

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)
(21.13)

τ2(k+ 1) = max
(
τ3(k)+ 3,τ2(k)+ 3

)
(21.14)

τ3(k+ 1) = τ1(k). (21.15)

Initializing this system with τ1(1) = τ2(1) = τ3(1) = 0, the following evolution can
be determined:

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
5
3
0

⎤

⎦ ,

⎡

⎣
8
6
5

⎤

⎦ ,

⎡

⎣
11
9
8

⎤

⎦ ,

⎡

⎣
14
12
11

⎤

⎦ , · · ·

After a short transient phase, trains depart from both stations at intervals of three
units of time. Obviously, shorter intervals cannot be reached by additional trains
in the inner loop of the system, as the outer loop at station 2 now represents the
“bottleneck” of the system.

In this simple example, several phenomena have been encountered: 1-periodic
solutions (for τ1(1) = 1 and τ2(1) = 0), 2-periodic solutions (for τ1(1) = τ2(1) = 0),
and a transient phase (for the extended system). These phenomena (and more) can
be conveniently analyzed and explained within the formal framework of idempotent
semirings or dioids.
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21.3 Dioid Algebraic Structures

An idempotent semiring (or dioid) is an algebraic structure based on two monoids
(one of which is commutative). A structure (M, ·,e) is a monoid if · is an internal
law, associative and of which e is the identity element. If the law · is commutative,
(M, ·,e) is called a commutative monoid. Then, a dioid (or idempotent semiring) is
a set, D , endowed with two binary operations, addition (⊕) and multiplication (⊗),
such that:

• (D ,⊕,ε) is an idempotent commutative monoid, i.e., ∀a ∈D ,a⊕ a = a
• (D ,⊗,e) is a monoid
• ⊗ is distributive with respect to ⊕
• ε is absorbing for ⊗, i.e., ∀a ∈D ,ε⊗ a = a⊗ ε = ε.

The identity element of addition (ε) is also called the zero element of the dioid,
while the identity element of multiplication (e) is also called the unit element of the
dioid. Often, the multiplication sign is omitted in written equations when they are
unambiguous.

Due to the idempotency property, any dioid can be endowed with a natural (par-
tial) order defined by a ( b⇔ a⊕ b = b, i.e., the sum of two elements a and b is
the least upper bound of a and b. Thus, any dioid forms a sub-semilattice. A dioid is
said to be complete if it is closed for infinite sums, i.e., there exists the greatest ele-
ment of D given by )=

⊕
x∈D x, and if ⊗ distributes over infinite sums. Formally,

a complete dioid forms a complete lattice for which the greatest lower bound of a
and b is denoted a∧b [1].

Example 21.1. [Max-plus algebra] Probably the best known idempotent semiring
is the so-called max-plus algebra, often denoted Zmax. It is defined over the set
Z∪{−∞} and its binary operations are defined as follows:

• addition: a⊕ b := max(a,b)
• multiplication: a⊗ b := a+ b

and the zero and unit elements are ε = −∞ and e = 0, respectively. Defining the
operations over the set Z∪{−∞,∞} defines a complete dioid (often denoted Zmax),
with the top element )=+∞. �

Example 21.2. [Min-plus algebra] The set Z∪{−∞,∞} endowed with addition de-
fined as a⊕ b := min(a,b), and multiplication (a⊗ b := a+ b) forms a complete
dioid also known as min-plus algebra, often denoted Zmin. Its zero, unit, and top
elements are ε = ∞, e = 0, and )=−∞, respectively. �

Note that the (partial) order is a property of a given dioid. For two elements a = 5
and b = 3 the max-plus addition is defined as a⊕b= 5⊕3= 5, which indicates that
5 * 3 in Zmax. The same calculation can be done in min-plus algebra, i.e., a and b
belonging to Zmin. In this case we get a⊕b = 5⊕3 = min(5,3) = 3 and, according
to the definition of the natural order of a dioid, this means 5( 3 in Zmin.
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As in classical algebra the binary operations can be extended to the matrix case
in dioids. For the matrices AAA,BBB ∈Dn×m, and CCC ∈Dm×p we get

Addition: [AAA⊕BBB]i j = [AAA]i j⊕ [BBB]i j

Multiplication: [AAA⊗CCC]i j =
m⊕

k=1

(
[AAA]ik⊗ [CCC]k j

)
.

Note that max-plus algebra (and min-plus algebra) may also be defined on other
sets, e.g., the set of real numbers. Depending on the set of definition, these idempo-
tent semirings are denoted Rmax or Rmin, respectively. An exhaustive description on
idempotent semirings such as max-plus and min-plus algebra can be found e.g. in
[1, 8, 11, 14].

21.4 Linear Dynamical Systems in Max-Plus Algebra

The usefulness of max-plus algebra becomes clear, when we take a second look at
the previously introduced transportation network. Recall that the recursive equations
for the earliest departure times in Fig. 21.4 are

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)

τ2(k+ 1) = max
(
τ1(k)+ 3,τ2(k)+ 3

)
.

Due to the max-operation, these equations are nonlinear in conventional algebra.
However, rewriting these equations in max-plus algebra with xxx := [τ1 τ2]

T , results
in the following linear system:

xxx(k+ 1) =

[
2 5
3 3

]

⊗ xxx(k)

= AAA⊗ xxx(k).

In general, it is possible to convert any timed event graph into a linear system in
max-plus algebra, also called a “max-plus linear system”. In max-plus algebra, the
variable xi(k) is the earliest possible time instant that event xi occurs for the kth

time. Therefore, max-plus algebraic functions xxx(k) are often called dater functions,
giving every event a precise earliest date. Note that, besides max-plus algebra, it is
also possible to convert any timed event graph into a min-plus linear system. Then,
the min-plus variable xi(t) represents the maximal number of occurrences of event
xi up to time t. Min-plus algebraic functions are, therefore, often called counter
functions.

As mentioned in Section 21.2, depending on the vector of initial firing times,
a number of different phenomena have been observed: 1- and 2-periodic behav-
iors, with and without an initial transient phase. For many application scenarios as,
e.g., transportation networks, a 1-periodic solution is desirable. It is therefore natural
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to ask which initial firing vectors will indeed generate 1-periodic solutions and what
the duration for one period is. In conventional algebra this means that the following
equation shall be satisfied:

τi(k+ 1) = λ + τi(k),
k = 1,2, . . .
i = 1,2, . . . ,n.

Rewriting this requirement in max-plus algebra provides

xi(k+ 1) = λ xi(k),
k = 1,2, . . .
i = 1,2, . . . ,n,

or, equivalently,

xxx(k+ 1) = λ xxx(k), k = 1,2, . . . .

This amounts to solving the max-plus eigenproblem. If, for a given AAA ∈ Z
n×n
max , there

exists ξξξ ∈ Z
n
max and λ ∈ Z such that

AAAξξξ = λ ξξξ ,

we call λ eigenvalue and ξξξ eigenvector of matrix A. If we choose the vector of
initial firing times, xxx(1), as an eigenvector, we get

xxx(2) = AAAxxx(1) = λ xxx(1)

and therefore

xxx(k) = λ (k−1)xxx(1), k = 1,2, . . . .

This is the desired 1-periodic behavior and the period length is the eigenvalue λ .
Note that powers in max-plus algebra (and in dioids in general) are defined by ai =
a⊗ ai−1, with a0 = e.

To solve the max-plus eigenproblem, we need the notion of matrix
(ir)reducibility, i.e, a matrix AAA ∈ Dn×n is called reducible, if there exists a permu-
tation matrix PPP, i.e., a square binary matrix that has exactly one 1-element in each
column and row and zeros elsewhere, such that ÃAA= PPPAAAPPPT is upper block-triangular.
Otherwise, AAA is called irreducible. If AAA ∈Dn×n is irreducible, there exists precisely
one eigenvalue. It is given by

λ =
n⊕

j=1

(
tr
(
AAA j)

)1/ j

, (21.16)

where “trace” and the jth root are defined as in conventional algebra, i.e., for any
BBB ∈Dn×n,

tr(BBB) =
n⊕

i=1

bii
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and for any α ∈D ,

(
α1/ j

) j
= α.

Whereas an irreducible matrix AAA ∈Dn×n has a unique eigenvalue λ , it may possess
several distinct eigenvectors. We will not go into the details of how to compute
the eigenvectors of matrices in dioids. There are several algorithms, e.g., Howard’s
algorithm and the power algorithm (see [14] for details), to determine the eigenvalue
and the corresponding eigenvector(s).

Recalling the transportation network, we have determined the max-plus system
matrix

AAA =

[
2 5
3 3

]

and one can check that AAA2 =

[
8 8
6 8

]

.

According to (21.16), the eigenvalue of the system can be calculated by

λ =
2⊕

j=1

(
tr
(
AAA j))1/ j

= 31⊕ 81/2 = 3⊕ 4 = 4.

It turns out that ξξξ = [1 e]T is an eigenvector of matrix AAA, i.e., it satisfies AAA⊗ ξξξ =
λ ⊗ ξξξ . Not surprisingly, this result confirms our observation of the transportation
network. When the initial departure times are set to xxx(1) = [1 0]T = ξξξ , we obtain a
1-periodic schedule with a departure interval of λ = 4.

21.5 The 2-Dimensional Dioid M ax
in [[γ,δ ]]

Max-plus algebra is, as shown in the previous section, suitable to model the be-
havior of timed event graphs. However, for more complex TEG, the corresponding
representation in max-plus algebra becomes more complicated. For the transporta-
tion network with three trains in the inner loop, we had to introduce a new variable
τ3 to find the state model. Taking a look at another TEG (taken from [1]), this issue
becomes even clearer. The linear dynamical system of Fig. 21.5 in max-plus alge-
bra, with xi(k),u j(k),y(k) being the earliest time instants that the transitions xi,u j,
and y fire for the kth time, is

x1(k+ 1) = 1u1(k+ 1)⊕ 4x2(k)

x2(k+ 1) = 5u2(k)⊕ 3x1(k+ 1)

x3(k+ 1) = 3x1(k+ 1)⊕ 4x2(k+ 1)⊕ 2x3(k− 1)

y(k+ 1) = x2(k)⊕ 2x3(k+ 1).
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Fig. 21.5 Timed event graph (taken from [1])

Rewriting the linear system in matrix-vector form, we get

xxx(k+ 1) = AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

y(k) =CCC0xxx(k)⊕CCC1xxx(k− 1),
(21.17)

where

AAA0 =

⎡

⎣
ε ε ε
3 ε ε
3 4 ε

⎤

⎦ , AAA1 =

⎡

⎣
ε 4 ε
ε ε ε
ε ε ε

⎤

⎦ , AAA2 =

⎡

⎣
ε ε ε
ε ε ε
ε ε 2

⎤

⎦ ,

BBB0 =

⎡

⎣
1 ε
ε ε
ε ε

⎤

⎦ , BBB1 =

⎡

⎣
ε ε
ε 5
ε ε

⎤

⎦ , CCC0 =
[

ε ε 2
]
, CCC1 =

[
ε e ε

]
.

In this example one observes that the equations are not in explicit form, and they are
not first-order. Recursively inserting the equation into itself changes the system to

xxx(k+ 1) =AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

=AAA0
(
AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

︸ ︷︷ ︸
xxx(k+1)

⊕

AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

=AAA2
0xxx(k+ 1)⊕ (III⊕AAA0)

(
AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

=AAA3
0xxx(k+1)⊕ (III⊕AAA0⊕AAA2

0)
(
AAA1xxx(k)⊕AAA2xxx(k−1)⊕BBB0uuu(k+1)⊕BBB1uuu(k)

)
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Since matrix AAA0 is not cyclic, AAAη
0 contains only ε-entries for η ≥ n. Therefore, the

first term of the right-hand side is equal to zero, i.e.,

xxx(k+ 1) =(III⊕AAA0⊕AAA2
0)
(
AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

=

⎡

⎣
ε 4 ε
ε 7 ε
ε 11 ε

⎤

⎦xxx(k)⊕

⎡

⎣
ε ε ε
ε ε ε
ε ε 2

⎤

⎦xxx(k− 1)

⎡

⎣
1 ε
4 ε
8 ε

⎤

⎦uuu(k+ 1)⊕

⎡

⎣
ε ε
ε 5
ε 9

⎤

⎦uuu(k),

y(k) =
[

ε ε 2
]

xxx(k)⊕
[

ε e ε
]

xxx(k− 1).

Then, we can transform this system into a first-order system by suitably augmenting
the state space, e.g., by defining a new state vector x̃xx(k) =

[
xxx(k) xxx(k− 1) uuu(k)

]T
.

The resulting first-order system is

x̃xx(k+ 1) = ÃAAx̃xx(k)⊕ B̃BBuuu(k+ 1)

y(k) = C̃CCx̃xx(k),

where

ÃAA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε 4 ε ε ε ε ε ε
ε 7 ε ε ε ε ε 5
ε 11 ε ε ε 2 ε 9
e ε ε ε ε ε ε ε
ε e ε ε ε ε ε ε
ε ε e ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃BB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ε
4 ε
8 ε
ε ε
ε ε
ε ε
e ε
ε e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C̃CC =
[

ε ε 2 ε e ε ε ε
]
. (21.18)

Clearly, modeling even a simple TEG as given in Fig. 21.5 in max-plus alge-
bra is not really efficient. However, applying the so-called γ-transform in max-
plus algebra results in another idempotent semiring. The γ-transform is defined by
xxx(γ) =

⊕
k∈Z xxx(k)γk. The resulting dioid is denoted Zmax[[γ]] and is the set of for-

mal power series in one variable γ with coefficients in Zmax and exponents in Z [1].
Addition and multiplication of two formal power series s and s′ are defined by

(
s⊕ s′

)
(k) = s(k)⊕ s′(k),

(
s⊗ s′

)
(k) =

⊕

i+ j=k

s(i)⊗ s′( j).
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The neutral element of addition is the series ε(γ) =
⊕

k∈Z εγk and the neutral
element of multiplication is the series e(γ) =

⊕
k∈N eγk. Furthermore )(γ) =

⊕
k∈Z)γk.
Applying the γ-transform to (21.17), we get

γxxx(γ) = AAA0γxxx(γ)⊕AAA1γ2xxx(γ)⊕AAA2γ3xxx(γ)⊕BBB0γuuu(γ)⊕BBB1γ2uuu(γ)

or equivalently

xxx(γ) =
(
AAA0⊕ γAAA1⊕ γ2AAA2

)

︸ ︷︷ ︸
AAA(γ)

xxx(γ)⊕ (BBB0⊕ γBBB1)
︸ ︷︷ ︸

BBB(γ)

uuu(γ)

y(γ) = (CCC0⊕ γCCC1)
︸ ︷︷ ︸

CCC(γ)

xxx(γ)

where

AAA(γ) =

⎡

⎣
ε 4γ ε
3 ε ε
3 4 2γ2

⎤

⎦ , BBB(γ) =

⎡

⎣
1 ε
ε 5γ
ε ε

⎤

⎦ , CCC(γ) =
[

ε γ 2
]
. (21.19)

Consequently, the TEG given in Fig. 21.5 can be modeled by (21.19), i.e., the γ-
transformed system, instead of (21.18), i.e., the system one would obtain by aug-
menting the state space as described above. Hence, it may be more efficient to use
the dioid Zmax[[γ]] to model more complex TEG.

The system given in Fig. 21.5 can also be modeled in min-plus algebra (denoted
Zmin). In this case the state space has to be augmented as well, in order to obtain
a first-order model. However, similar to the γ-transformation in max-plus algebra,
there is the so-called δ -transformation in min-plus algebra. The transform consti-
tutes an idempotent semiring denoted Zmin[[δ ]]. It is the set of formal power series
in δ with coefficients in Zmin and exponents in Z.

As mentioned before, it is possible to model any timed event graph in max-plus
algebra as well as in min-plus algebra. Which dioid one uses is often based on the
specific application which shall be modeled. If for example the model is supposed
to be used in combination with a PLC (programmable logic controller) it may be
favorable to model the system in min-plus algebra as the min-plus variable xxx(t) is
dependent on time and a PLC also works with a specific cycle time.

It would, however, of course be preferable to combine the assets of max-plus
and min-plus algebra. To do so, we first introduce a 2-dimensional dioid denoted
B[[γ,δ ]]. It is the set of formal power series in two variables (γ,δ ) with Boolean co-
efficients, i.e, B = {ε,e} and exponents in Z (see [1, 5, 10] for more information).
Thus, a series in this dioid may be, for example, s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5. Graphi-
cally the series s can be represented as dots in the event-time plane (see Fig. 21.6).
The interpretation of a monomial γkδ t is that the (k+ 1)st occurrence of the corre-
sponding event happens exactly at time t1. In terms of timed event graphs, however,

1 Following the convention defined between Remarks 5.22 and 5.23 in [1, Section 5.4].
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Fig. 21.6 Graphical representation of the series s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5 ∈ B[[γ ,δ ]]

the following interpretation of γkδ t would be more useful: the (k+ 1)st occurrence
of the event happens at time t at the earliest or at time t, the event has occurred
at most (k + 1) times. If, in this interpretation, we add two monomials γkδ t and
γk+κ δ t−τ , κ ,τ ∈ N0, we clearly get γkδ t . In words, if an event can happen at time t
at most k+1 times and it can happen at an earlier time t−τ at most k+1+κ times,
the resulting statement is that at time t it can happen at most k+ 1 times. We there-
fore identify all points γkδ t and γk+κ δ t−τ , κ ,τ ∈ N0, i.e., instead of a single point,
we consider the “South-East cone” of this point. This establishes an equivalence
relation and the resulting dioid of equivalence classes (quotient dioid) in B[[γ,δ ]] is
denoted M ax

in [[γ,δ ]] (see [1, 5, 10]). Note that this dioid admits only nondecreasing
series and has the following properties:

γkδ t ⊕ γ lδ t = γmin(k,l)δ t

γkδ t ⊕ γkδ τ = γkδ max(t,τ)

γkδ t ⊗ γ lδ τ = γ(k+l)δ (t+τ).

The zero, unit, and top element of M ax
in [[γ,δ ]] are ε = γ+∞δ−∞, e = γ0δ 0, and ) =

γ−∞δ+∞, respectively. As a consequence of this construction, e.g., the series s̃ =
γ1δ 1⊕γ3δ 2⊕γ4δ 5⊕γ5δ 2 is equivalent to the series s = γ1δ 1⊕γ3δ 2⊕γ4δ 5, which
is shown in Fig. 21.7.

Using M ax
in [[γ,δ ]], we can immediately write down a dioid model for TEG. For

example, the TEG in Fig. 21.5 can be represented by

x1 = γ1δ 4x2⊕ γ0δ 1u1

x2 = γ0δ 3x1⊕ γ1δ 5u2

x3 = γ0δ 3x1⊕ γ0δ 4x2⊕ γ2δ 2x3

y = γ1δ 0x2⊕ γ0δ 2x3

or, more compactly,

xxx = AAAxxx⊕BBBuuu

y = CCCxxx,
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Fig. 21.7 Graphical representation of the series s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5 ∈M ax
in [[γ ,δ ]]

where

AAA =

⎡

⎣
ε γ1δ 4 ε

γ0δ 3 ε ε
γ0δ 3 γ0δ 4 γ2δ 2

⎤

⎦ , BBB =

⎡

⎣
γ0δ 1 ε

ε γ1δ 5

ε ε

⎤

⎦ , CCC =
[

ε γ1δ 0 γ0δ 2
]
.

Clearly, it is possible to model even very complex TEG in a compact form using the
dioid M ax

in [[γ,δ ]].

21.6 High-Throughput Screening Systems

Among the vast variety of systems that can be modeled as timed event graphs is
the operation of so-called High-Throughput Screening Systems. High-throughput
screening (HTS) has become an important technology to rapidly test thousands of
biochemical substances [13, 20]. In pharmaceutical industries, for example, HTS is
often used for a first screening in the process of drug discovery. In general, high-
throughput screening plants are fully automated systems containing a fixed set of
devices performing liquid handling, storage, reading, plate handling, and incubation
steps. All operations which have to be conducted to analyze one set of substances
are combined in a so-called batch. The testing vessel carrying the biochemical sub-
stances in HTS systems is called microplate. It features a grid of up to 3456 wells.
The number of wells is historically grown and represents a multiple of 96 reflecting
the original microplate with 96 wells [18]. Several microplates may be included in a
batch to convey reagents or waste material. While conducting a screening run, more
than one batch may be present in the system at the same time, a single batch may
pass the same machine more than once, a single batch may occupy two (or more)
resources simultaneously, e.g., when being transferred from one resource to another,
and there are minimal and maximal processing times defined by the user.

For better understanding we introduce a simple example of an HTS operation.
One single batch of this example consists of three activities which are executed on
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three different resources. The first activity, executed on R1, represents the filling of
some biochemical substance A into the wells of a microplate. After that, the mi-
croplate is moved to a second resource R2, where the second activity is executed.
This activity basically mixes substance A with some substance B. Substance B is
provided by another activity executed on resource R3. This resource operates inde-
pendently of the other resources and may produce substance B even when resources
R1 and R2 are not working. Due to hardware constraints the user sets the following
minimal time durations:

• act1 :

- filling compound A into the wells of microplate: 7 units of time
- post-processing after transfer of microplate to R2: 1 unit of time

• act2 :

- pre-processing before transfer of microplate from R1: 1 unit of time
- waiting time before substance B can be added: 1 unit of time
- mixing of substances: 12 units of time

• act3 :

- providing one heap of substance B: 5 units of time
- post-processing after providing one heap of substance B: 1 unit of time

• The transfer processes are assumed to be possible in zero time.

The corresponding timed event graph is given in Fig. 21.8.
For real HTS systems, further activities, such as incubation steps or reading oper-

ations, would be executed on the compound AB. Screening runs of HTS plants may
easily involve 150 resource allocations, i.e., activities, per batch. Since all relations

0
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x2x1

1

0

x3

act1

act2

x7
R2 :

R1 :

x4 x5 x6

x10x9
R3 :

1

1

1

12

7

x8
5

act3

Fig. 21.8 TEG of a single batch of our example HTS operation
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Fig. 21.9 TEG of a single batch and resource capacities

given in Fig. 21.8 belong to one single batch, there are no tokens in the timed event
graph. However, additional constraints between events of different batches need to
be taken into account. For example, all resources have a specific capacity. If a re-
source has a capacity of 1, an activity may only occupy this resource if the preceding
activity (which may be of a different batch) has been finished. In our small example
resources R1 and R3 have a capacity of 1 while resource R2 has a capacity of 2, i.e.,
this resource may execute two activities at the same time. To model this, the TEG
has to be extended by places with 1 and 2 initial tokens. The resulting TEG is shown
in Fig. 21.9. Finally, the user has to evaluate which transitions he or she is able to
control and what the output of the system is. For HTS plants, it is usually possible
to control the starting events of every activity and the output is directly connected
to the last transition of a single batch. Note that, depending on the specific system,
the controllable transitions and the output transitions may be different. Without loss
of generality, we fix all starting events of all activities of our example, i.e., x1, x4,
and x8, to be controllable and the output of our system shall be the last event of a
single batch, i.e., x7. Thus the timed event graph modeling the single batch of our
HTS operation is extended according to Fig. 21.10. Then the TEG can be written as
a M ax

in [[γ,δ ]]-model:

xxx =AAAxxx⊕BBBuuu

y =CCCxxx,
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Fig. 21.10 TEG of a single batch, with resource capacities, and input and output transitions

with

AAA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε ε γ ε ε ε ε ε ε ε
δ 7 ε ε ε e ε ε ε ε ε
ε δ ε ε ε ε ε ε ε ε
ε ε ε ε ε ε γ2 ε ε ε
ε e ε δ ε ε ε ε ε ε
ε ε ε ε δ ε ε ε e ε
ε ε ε ε ε δ 12 ε ε ε ε
ε ε ε ε ε ε ε ε ε γ
ε ε ε ε ε ε ε δ 5 ε ε
ε ε ε ε ε ε ε ε δ ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, BBB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e ε ε
ε ε ε
ε ε ε
ε e ε
ε ε ε
ε ε ε
ε ε ε
ε ε e
ε ε ε
ε ε ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

CCC =
[

ε ε ε ε ε ε e ε ε ε
]
.

Clearly, the M ax
in [[γ,δ ]]-model of the HTS operation is very compact. In the next

chapter, it is explained how this model can be used to efficiently compute control
laws for such systems.

21.7 Further Reading

In this chapter, the modeling and analysis of linear systems in a dioid framework
have been presented. However, the chapter only provides a rough overview of this
topic. A more exhaustive and mathematical presentation of dioids and systems in
dioids can be found in [1, 2]. Many other works on max-plus algebra, dioids in
general, and performance evaluation in idempotent semirings have been published,



21 Discrete-Event Systems in a Dioid Framework: Modeling and Analysis 449

e.g., [5, 8, 10, 11, 14]. Besides that, there are several software packages available
to handle max-plus algebraic systems, e.g., the max-plus algebra toolbox for Sci-
cosLab (www.scicoslab.org), or the C++ library MinMaxGD to manipulate
periodic series in M ax

in [[γ,δ ]] [6]. For more information on high-throughput screen-
ing systems the reader is referred to [13, 18, 20]. However, please note, that HTS
is only one possible application that has a linear representation in dioids. Other ap-
plications are, e.g., traffic systems, computer communication systems, production
lines, and flows in networks. The reader is also invited to read the next chapter on
control theory, developed for discrete-event systems in a dioid framework.
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