
Modeling and Control of Resource Sharing Problems in Dioids

Soraia Moradi1,2,3, Laurent Hardouin3, and Jörg Raisch1,2

Abstract— The topic of this paper is the modeling and control
of a class of timed Petri nets with resource sharing problems
in a dioid framework. We first introduce a signal which
denotes the number of resources available for each competing
subsystem at each instant of time. Based on this signal, the
overall system is modeled in min-plus algebra. Using residuation
theory, an optimal control policy is developed, where optimality
is in the sense of a lexicographical order reflecting the chosen
prioritization of subsystems.

I. INTRODUCTION

Timed event graphs (TEG)s are a subclass of timed Petri
nets where each place has exactly one upstream and one
downstream transition and all arcs have weight 1. The
time/event behavior of TEGs, under the earliest functioning
rule (i.e., transitions fire as soon as they are enabled), can
be expressed linearly over some dioids [1]. TEGs can only
model synchronization but not concurrency or choice. In
many applications, like railway networks and manufacturing
systems, there are only limited resources, which are shared
among different users. For example, in a railway network,
there may be single track segments which are used by
multiple trains, but, at each instant of time, only one train
can occupy the track. This problem is called the ”Resource
Sharing” (RS) problem. Systems with RS problems can be
modeled by timed Petri nets but not by TEGs, as they
contain choice or conflict. In the literature, various methods
have been investigated to deal with the RS problem. In
[2], systems with RS are modeled by switching max-plus
linear systems, where a system can switch between different
modes of operation and in each mode is modeled by a linear
max-plus system. Using model predictive control (MPC), the
optimal switching sequence is obtained. In [3], modeling and
control of switching max-plus-linear systems with random
and deterministic switching have been discussed. In [4],
the just in time control problem of switching max-plus
linear systems where the switching variable on the study
horizon is given is considered. In [5], the model consists
of a TEG and some additional inequalities which model the
limited availability of shared resources. In [6], conflicting
time event graphs are modeled in the max-plus algebra and
an approach to calculate the cycle time is proposed. In
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[7], modeling and performance evaluation of timed Petri
nets with different levels of priority are investigated. Three
possible place/transition patterns are considered, namely,
conflict, synchronization and priority configurations. In [8],
systems with RS problems are modeled in the max-plus
algebra. A method to detect conflicts by checking the time
line overlaps of processes is introduced. In order to solve
conflicts, the schedule is changed to move up the process
with low priority.

In this paper, a method to model and control the RS
problem in the min-plus algebra is proposed. The main con-
tribution of this work is as follows. First, a signal denoting
the number of resources available for competing subsystems,
at each instant of time is introduced. The definition of
this signal incorporates a predefined prioritization policy.
Based on this signal, the overall system is modeled in min-
plus algebra. Using residuation theory, an optimal control
policy is developed, where optimality is in the sense of
a lexicographical order reflecting the chosen prioritization
of subsystems. In essence, we are aiming at firing input
transitions of subsystems as late as possible, while making
sure that the firing of output transitions is not later than
specified in given reference signals. Moreover, the control of
lower-priority subsystems may not degrade the performance
of higher-priority subsystems.

The paper is organized as follows. Section II recalls the
necessary algebraic tools. In Section III, modeling of a
system with RS problem over the dioid Zmin is discussed.
Section IV addresses the optimal control problem, and Sec-
tion V provides some conclusions.

II. ALGEBRAIC PRELIMINARIES

The following is a summary of basic results from dioid
theory and residuation theory. The interested reader is invited
to peruse [1], [9], and [10] for more details.

A. Dioid Theory

A dioid D is a set endowed with two internal operations
denoted ⊕ (addition) and ⊗ (multiplication), both associative
and having a neutral element denoted ε (zero element) and
e (unit element), respectively. Moreover, ⊕ is commutative
and idempotent (∀a ∈ D, a⊕ a = a), ⊗ distributes over ⊕,
and ε is absorbing for ⊗ (∀a ∈ D, ε ⊗ a = a ⊗ ε = ε).
By convention, multiplication is often expressed by juxtapo-
sition, i.e., a ⊗ b = ab. The operation ⊕ induces an order
relation � on D, defined by: ∀a, b ∈ D, a � b⇔ a⊕ b = b.
A dioid is said to be complete if it is closed for infinite sums
and if multiplication distributes over infinite sums. In this
case, the greatest (in the sense of the above order) element
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of D is denoted > (the top element) and is equal to the
sum of all its elements (> =

⊕
x∈D x). In a complete dioid,

another binary operation (”greatest lower bound”) denoted
∧, can be defined by a ∧ b =

⊕
x∈Dab

x with Dab = {x ∈
D|x � a and x � b}.
• The set Zmin = Z ∪ {−∞,+∞} endowed with the

standard min operator as ⊕ and standard addition as
⊗ is a complete dioid, where ε = +∞, e = 0 and
> = −∞. Consequently, � on Zmin is the reverse of
the standard order (e.g., 3 � 5), and the greatest lower
bound ∧ is the standard max operator. Both operations
can be readily generalized for matrices of appropriate
dimensions:

∀A,B ∈ Zn×mmin , (A⊕B)ij = Aij ⊕Bij ,

∀A ∈ Zn×mmin , B ∈ Zm×pmin , (A⊗B)ij =

m⊕
k=1

Aik ⊗Bkj .

• Consider the set of formal power series in δ with expo-
nents in Z and coefficients in Zmin, denoted ZminJδK.

- an element s ∈ ZminJδK can be interpreted as a
map s : Z→ Zmin and written as:

s =
⊕
t∈Z

s(t)δt,

- the set ZminJδK can be equipped with operations
⊕ and ⊗ defined by: ∀t ∈ Z, s1, s2 ∈ ZminJδK :

(s1 ⊕ s2)(t) = s1(t)⊕ s2(t)

(s1 ⊗ s2)(t) =
⊕
j∈Z

s1(j)⊗ s2(t− j)

- endowed with these operations, the set ZminJδK is
a complete dioid with zero element ε =

⊕
t∈Z εδ

t

and one element e =
⊕

t∈Z e(t)δ
t, e(t) ={

e, t = 0
ε otherwise.

Note that ZminJδK inherits its order from Zmin.
From the general definition, s1 � s2 ⇔ s1 ⊕ s2 =
s2, it follows immediately that s1 � s2 ⇔ ∀t :
s1(t) � s2(t).

• s ∈ ZminJδK is nonincreasing if

t1 ≤ t2 ⇒ s(t2) � s(t1).

The set of nonincreasing formal power series in
ZminJδK is denoted by Zmin,δJδK and is a com-
plete dioid. Because of nonincreasingness, elements in
Zmin,δJδK, can be represented compactly . E.g., the
series s = s(t)δt with

s(t) =


e, t ≤ 0
1, t = 1
2, t = 2, 3, 4
3, t ≥ 5

can be written as:

s = eδ0 ⊕ 1δ1 ⊕ 2δ4 ⊕ 3δ+∞.

Note that we use the same symbol to refer to multiplication
in Zmin and Zmin,δJδK. The same is true for addition, zero
and one element.

Theorem 1: [10] Over a complete dioid D, the implicit
equation x = ax⊕ b admits a least solution x = a∗b, where
a∗ is the Kleene star of a, defined by a∗ =

⊕
i∈N0

ai with
a0 = e.

B. Residuation Theory

Residuation theory (e.g., [11], [12]) provides, under some
assumptions, the greatest solution (in accordance with the
considered order) to the inequality f(x) � b where f is an
order-preserving, or isotone, mapping (i.e., a � b⇒ f(a) �
f(b)) defined over ordered sets.

Definition 1 (Residuation): Let f : D → C be an isotone
mapping with (D,�) and (C,�) being ordered sets. Map-
ping f is said to be residuated if, for all y ∈ C, the greatest
element of the subset {x ∈ D|f(x) � y} exists and lies in
this subset. This element is denoted f ](y), and mapping f ]

is called the residual of f .
Denote left multiplication by a in a dioid by La, i.e.,

La : x 7→ a ⊗ x . Mapping La is residuated. Its residual
is denoted L]a : x 7→ a ◦\x and called left division by a.
Therefore, a ◦\b is the greatest solution to inequality a⊗x �
b (i.e. a ◦\b = x̂ =

⊕
{x | a ⊗ x � b}). Similarly, right

multiplication by a is a residuated mapping. Its residual x◦/a
is called right division by a.
Residuation can be extended to the matrix case. Given the
matrices A ∈ Dm×n and B ∈ Dm×p, the greatest solution
of A⊗X � B, with � understood elementwise, is given by
D = A ◦\B, where

Dij =

m∧
k=1

(Aki ◦\Bkj).

III. MODELING

This section presents a modeling method for systems with
RS. In a first step, RS is ignored and, the system is modeled
linearly in Zmin. Then a signal α describing the availability
of shared resources is introduced. Using α and taking into
account a given priority policy, the model resulting from step
1 is modified to include RS effects.

A. Modeling of TEG

Timed event graphs can be seen as linear discrete event
dynamical systems in suitable semirings (e.g., [10], [1]). For
instance, by associating to each transition xi a “counter”
function xi : Z→ Zmin, where xi(t) is equal to the number
of firings of transition xi up to time t, it is possible to obtain
a linear representation in Zmin.

A TEG can be modeled over Zmin as: x(t) = A1x(t− 1)⊕ ...⊕ATx(t− T )⊕
B0u(t)⊕ ...⊕BMu(t−M)

y(t) = C ⊗ x(t)
(1)

where x(t) ∈ Znmin, with n the number of internal transi-
tions, u(t) ∈ Zpmin with p the number of input transitions
and y(t) ∈ Zqmin with q the number of output transitions.
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Matrices A1, ..., AT , B0, ..., BM and C are of appropriate
size with entries in Zmin. T is the maximum holding time
of places between internal transitions and M denotes the
maximum holding time of places, connecting input transi-
tions to internal ones.
The counter functions xi, um, yj can be represented by
nonincreasing formal power series, often referred to as
δ-transforms, and the TEG model can be expressed in
Zmin,δJδK as: {

x = Ax⊕Bu
y = Cx,

(2)

where x ∈ Zmin,δJδKn , u ∈ Zmin,δJδKp and y ∈
Zmin,δJδKq . Matrices A, B and C are of appropriate size
with entries in Zmin,δJδK.
According to Theorem 1, the least solution of (2) is y =
CA∗Bu, where CA∗B is refered to as the system transfer
function matrix. The entries of CA∗B are periodic series in
Zmin,δJδK [1].
A periodic series can be written as s = p̄ ⊕ q̄(νδτ )∗ where
p̄ =

⊕np

i=0 piδ
i is a polynomial representing a transient,

q̄ =
⊕nq

i=0 qiδ
i is a polynomial representing a pattern

that is repeated every τ time units and after ν firings of
the corresponding transition. The asymptotic slope σ∞(s)
of a periodic series is defined as σ∞(s) = ν

τ and, in a
manufacturing context, can be viewed as the production rate
of the system.

Example 1: Consider the TEG shown in Fig.1, where we
use the convention that holding times of places are 0 unless
specified otherwise. Counters u, x1 , x2, and y are related

Fig. 1: A Single Input Single Output TEG [13].

as follows over Zmin: x1(t) = 2⊗ x1(t− 5)⊕ 1⊗ x2(t)⊕ u(t)
x2(t) = x1(t− 1)⊕ 1⊗ x2(t− 2)⊕ u(t)
y(t) = x2(t),

Their respective δ-transforms are then related as: x1 = 2δ5x1 ⊕ 1x2 ⊕ u
x2 = δx1 ⊕ 1δ2x2 ⊕ u
y = x2,

Consequently, by considering the state vector x =

(
x1
x2

)
,

the following representation over Zmin,δJδK is obtained :

x =

(
2δ5 1
δ 1δ2

)
x⊕

(
e
e

)
u (3)

y =
(
ε e

)
x.

s(t)

t

τ

ν

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

10
11
12

Fig. 2: Periodic series (δ1 ⊕ 1δ3)(2δ5)∗

The transfer function matrix of this TEG is then given by:

H = (δ ⊕ 1δ3)(2δ5)∗, (4)

which is graphically represented in Fig. 2. These compu-
tations can be done by the software introduced in [14] and
[15].

B. Modeling of resource sharing problem

Consider a system in which different users (subsystems)
share a limited number of (equal) resources. For notational
simplicity, each subsystem is assumed to be a SISO TEG
denoted Sk as shown in Fig. 3. In this system,

Fig. 3: n resources, shared between m users.

• m TEGs compete for n shared resources, modeled by
n tokens in a shared place;

• the tokens corresponding to the shared resources have
a holding time d ≥ 1.

• allocation of a resource by subsystem Sk is modeled
by the firing of transition xkik , release of a resource by
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the firing of xkjk . For simplification, these transitions are
denoted by Ik and Ok, respectively.

Neglecting resource sharing (which for each subsystem
means ignoring all the arcs coming from other subsystems
and ending in the shared place and ignoring all arcs begin-
ning in the shared place and ending in other subsystems) and
considering the earliest firing rule, the k-th subsystem can
be modeled in Zmin as:

S̃k :


xk(t) = Ak1x

k(t− 1)⊕ ...⊕AkTk
xk(t− Tk)

⊕Bk0uk(t)⊕ ...⊕BkMk
uk(t−Mk)

yk(t) = Ck ⊗ xk(t)
(5)

In order to decide which user takes the resource in the case
of conflict, we introduce a priority policy. In the case of
conflict, the system with the higher priority will take the
available resource.

Priority policy: In the following, we assume that the
priority of S̃k is higher than S̃k+1, for k = 1, ...,m− 1.
Then, the following recursive equation determines the num-
ber of resources available for S̃k at time t:

αk(t) = αk−1(t)⊗ Ik−1(t− 1)◦/Ik−1(t) for k = 2, ...,m
α1(t) = (

⊗m
k=1[Ok(t− d)◦/Ik(t− 1)])⊗ n.

(6)
α1(t) represents the number of resources available for

S̃1 at time instant t, which is equal to the initial number
of resources, n, minus the number of resources which are
already being used and therefore, not available. The quantity
Ok(t − d)◦/Ik(t − 1) represents the number of resources
released by S̃k up to time t−d minus the number of resources
allocated by S̃k up to time t− 1.
αk(t), k = 2, ...,m, represents the number of resources
available for S̃k at time t. It is given by αk−1(t) minus the
number of resources newly allocated by S̃k−1 at time t. The
latter is given by, in standard algebra, Ik−1(t)−Ik−1(t−1).
Hence, in Zmin, (6) follows.
We next describe how the signal αk affects the behavior of
the k-th subsystem. S̃k under the influence of αk is denoted
by Sk, and it evolves according to:

Sk :


xk(t) = (Ak1 ⊕Akα(t))x

k(t− 1)⊕ ...⊕AkTk
xk(t− Tk)

⊕Bk0uk(t)⊕ ...⊕BkMk
uk(t−Mk)

yk(t) = Ck ⊗ xk(t)
(7)

where

(Akα(t))i,j =

{
αk(t) if i = j and xki = Ik

ε else . (8)

Note that adding the term Akα(t) in (7) amounts, in con-
ventional algebra, to the following statement: the number
of firings of transition xkik in system Sk at time t, i.e.,
xkik(t) − xkik(t − 1) is additionally (when compared to the
case without resource sharing) restrained by the term αk(t).

Example 2: Consider the system shown in Fig. 4 under
the priority policy discussed above.

Neglecting RS, each subsystem can be modeled in Zmin
as:

S̃1 : x1(t) = A1
2 ⊗ x1(t− 2)⊕A1

3 ⊗ x1(t− 3)⊕B1
0u

1(t),

S̃2 : x2(t) = A2
2 ⊗ x2(t− 2)⊕A2

5 ⊗ x2(t− 5)⊕B2
0u

2(t),

S̃3 : x3(t) = A3
2 ⊗ x3(t− 2)⊕A3

6 ⊗ x3(t− 6)⊕B3
0u

3(t),

S̃4 : x4(t) = A4
2 ⊗ x4(t− 2)⊕A4

4 ⊗ x4(t− 4)⊕B4
0u

4(t),
and yk(t) = Ck ⊗ xk(t), k = 1, ..., 4

(9)

where A1
2 = A2

2 = A3
2 = A4

2 =

(
ε 2
ε ε

)
, A1

3 = A2
5 = A3

6 =

A4
4 =

(
ε ε
e ε

)
, Bk0 =

(
e
ε

)
and Ck =

(
ε e

)
, k = 1, ..., 4.

3

5

2

6

4

x11

x21

x31

x41

x12 y1

x22 y2

x32 y3

x42 y4

S1 : u1

S2 : u2

S3 : u3

S4 : u4

Fig. 4: 2 resources shared between 4 users.

t 0 1 2 3 4 5 6 · · · +∞
u1 e 1 3 3 6 6 6 · · · 6
u2 e 2 3 3 4 4 4 · · · 4
u3 e 3 3 3 5 5 5 · · · 5
u4 e 2 2 2 2 2 7 · · · 7

Tab. 1 The input signals of Example 2
By considering the resource sharing phenomenon, the system
becomes:
S1 : x1(t) = A1

α(t) ⊗ x
1(t− 1)⊕A1

2 ⊗ x1(t− 2)

⊕A1
3 ⊗ x1(t− 3)⊕B1

0u
1(t),

S2 : x2(t) = A2
α(t) ⊗ x

2(t− 1)⊕A2
2 ⊗ x2(t− 2)

⊕A2
5 ⊗ x2(t− 5)⊕B2

0u
2(t),

S3 : x3(t) = A3
α(t) ⊗ x

2(t− 1)⊕A3
2 ⊗ x3(t− 2)

⊕A3
6 ⊗ x3(t− 6)⊕B3

0u
3(t),

S4 : x4(t) = A4
α(t) ⊗ x

4(t− 1)⊕A4
2 ⊗ x4(t− 2)

⊕A4
4 ⊗ x4(t− 4)⊕B4

0u
4(t),

and yk(t) = C ⊗ xk(t), k = 1, ..., 4

(10)

where Akα(t) =

(
αk(t) ε
ε ε

)
, k = 1, ..., 4, and

α1(t) = 2⊗ (x12(t− 2)◦/x11(t− 1))⊗ (x22(t− 2)◦/x21(t− 1))
⊗(x32(t− 2)◦/x31(t− 1))⊗ (x42(t− 2)◦/x41(t− 1)),

α2(t) = α1(t)⊗ (x11(t− 1)◦/x11(t)),
α3(t) = α2(t)⊗ (x21(t− 1)◦/x21(t)),
α4(t) = α3(t)⊗ (x31(t− 1)◦/x31(t)).

(11)

413



With the resulting model it is straightforward to simulate the
behavior of the system. For example, consider the input given
by Tab. 1. According to Tab. 1, at time t = 4 for example,
input transitions u1, u2, u3, and u4 have fired 6, 4, 5, and
2 times, respectively. The corresponding series in Zmin,δJδK
are:

u1 = eδ0 ⊕ 1δ1 ⊕ 3δ3 ⊕ 6δ+∞,
u2 = eδ0 ⊕ 2δ1 ⊕ 3δ3 ⊕ 4δ+∞,
u3 = eδ0 ⊕ 3δ3 ⊕ 5δ+∞,
u4 = eδ0 ⊕ 2δ5 ⊕ 7δ+∞.

(12)

Using available simulation tools, the system will respond as
follows:
x11 = eδ0 ⊕ 1δ5 ⊕ 2δ7 ⊕ 3δ10 ⊕ 4δ12 ⊕ 5δ15 ⊕ 6δ+∞,
x21 = eδ0 ⊕ 1δ17 ⊕ 2δ20 ⊕ 3δ24 ⊕ 4δ+∞,
x31 = eδ27 ⊕ 1δ31 ⊕ 2δ35 ⊕ 3δ39 ⊕ 4δ43 ⊕ 5δ+∞,
x41 = eδ47 ⊕ 1δ51 ⊕ 2δ53 ⊕ 3δ57 ⊕ 4δ59 ⊕ 5δ63

⊕6δ65 ⊕ 7δ+∞.
(13)

Note that these power series capture the information on when
resources are allocated to the respective subsystem.

IV. OPTIMAL FEEDFORWARD CONTROL

The goal of this section is to calculate optimal control
ensuring the just-in-time behavior with respect to output
references zk for each system Sk. We assume that ∃tf such
that zk(t) = zk(tf )∀t ≥ tf , i.e., each zk can be completely
specified over a finite horizon. We first recall optimal control
computation for the system S̃k (without RS)(see [1]).

A. Optimal control of S̃k

An input uk∗ is optimal, if it is the greatest input satisfying

yk � zk, (14)

where ”greatest” and � are to be interpreted in the sense of
the order in Zmin,δJδK. Hence, in conventional algebra, the
optimal input corresponds to the least number of firings of
the input transition that will ensure that the output transition
fires at least zk(t) times (at any instant of time). This is also
referred to as just-in-time control. It can be calculated as
follows:
From (5) one can write:

∀t



Ak1x
k(t− 1) � xk(t)

...
AkTk

xk(t− Tk) � xk(t)
Bk0 ⊗ uk(t) � xk(t)
...
BkMk

⊗ uk(t−Mk) � xk(t)

(15)

According to the results from Section II-B, (15) is equivalent
to:

∀t



xk(t− 1) � Ak1 ◦\xk(t)
...
xk(t− Tk) � AkTk

◦\xk(t)
uk(t) � Bk0 ◦\xk(t)
...
uk(t−Mk) � BkMk

◦\xk(t)

(16)

(16) is equivalent to:

∀t



xk(t) � Ak1 ◦\xk(t+ 1)
...
xk(t) � AkTk

◦\xk(t+ Tk)
uk(t) � Bk0 ◦\xk(t)
...
uk(t) � BkMk

◦\xk(t+Mk).

(17)

Since, yk(t) = Ckxk(t), from (14), we obtain:

xk(t) � Ck ◦\zk(t). (18)

(17) and (18) can be summarized as:

xk(t) � Ak1 ◦\xk(t+ 1) ∧ ... ∧AkTk
◦\xk(t+ Tk) ∧ Ck ◦\zk(t)

(19a)
uk(t) � Bk0 ◦\xk(t) ∧ ... ∧BkMk

◦\xk(t+Mk). (19b)

Obviously, the greatest solution satisfying (19a) and (19b) is
given by:

ζk(t) = Ak1 ◦\ζk(t+ 1) ∧ ... ∧AkTk
◦\ζk(t+ Tk) ∧ Ck ◦\zk(t),

(20)
where ζk(t) = ζk(tf ) = Ck ◦\zk(tf ),∀t ≥ tf , and

uk∗(t) = Bk0 ◦\ζk(t) ∧ ... ∧BkMk
◦\ζk(t+Mk). (21)

Note that ζk(t) represents the vector of the least number of
firings of all internal transitions up to time t such that (14)
holds. ζk(t) is sometimes called the co-state of the system.

B. Optimal control with RS

We now consider an optimal control problem for the
system (7) and (8).
First, the optimal control for subsystem S1 is computed.
Then the optimal control of system S2 is computed under
the restriction that the optimal behavior of S1 is unchanged.
This is repeated until the control for the lowest priority
subsystem is calculated. In other words, the control of each
subsystem will not decrease the performance of the higher
priority subsystems. This can be conveniently expressed
using the following lexicographic order on Zmin,δJδKm: For
u = (u1, u2), u′ = (u′1, u′2) ∈ Zmin,δJδKm

u �L u′ ⇔
{
u1 � u′1, u1 6= u′1 or
u1 = u′1 and u2 � u′2 , (22)

where � is the previously introduced order in Zmin,δJδK.
Then, we look for the greatest u = (u1, ..., um) (in the above
lexicographic order) such that yk(t) � zk(t), k = 1, ...,m.

Proposition 1: The optimal solution for the above control
problem is given by:

uk∗(t) = Bk0 ◦\ζk(t) ∧ ... ∧BkMk
◦\ζk(t+Mk). (23)

where

ζk(t) = (
∧Tk

l=1(Akl ◦\ζk(t+ l)) ∧ Ck ◦\zk(t)∧
Akγ(t+ d) ◦\ζk(t+ d− 1))⊕ ζk(t+ 1),

(24)
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with

(Akγ(t))i,j =

{
γk(t) if xki = Ik and xkj = Ok

ε else
(25)

and γk(t) is given by: γk(t) =
⊗k−1

r=1(Or∗(t− d)◦/Ir∗(t))⊗ n
for k = 2, ...,m and

γ1(t) = n.

(26)

As before, ζk(t) = ζk(tf ) = Ck ◦\zk(tf ),∀t ≥ tf .
Or∗ and Ir∗ are the corresponding entries of the optimal

counter xr∗ previously computed using the optimal input
ur∗, 1 ≤ r ≤ k − 1.
Proof: First, the optimal control of S1 is computed by
neglecting all the other subsystems. The computation of the
optimal control u1∗ is then straightforward, using (20) and
(21) for k = 1.{
ζ1(t) = A1

1 ◦\ζ1(t+ 1) ∧ ... ∧A1
T1
◦\ζ1(t+ T1) ∧ C1 ◦\z1(t)

u1∗(t) = B1
0 ◦\ζ1(t) ∧ ... ∧B1

M1
◦\ζ1(t+M1)

(27)
and

x1∗(t) =

T1⊕
j=1

(A1
jx

1
∗(t− j))⊕

M1⊕
j=0

(B1
ju

1
∗(t− j)) (28)

Note that γ1(t) = n, and therefore, A1
d � A1

γ , hence
A1
d
◦\ζ1(t+d) � A1

γ ◦\ζ1(t+d) � A1
γ ◦\ζ1(t+d−1) (where the

latter inequality is true because of ζ being nonincreasing).
Therefore, as d ≤ T1,

A1
1 ◦\ζ1(t+ 1) ∧ ... ∧A1

T1
◦\ζ1(t+ T1) ∧ C1 ◦\z1(t) =

A1
1 ◦\ζ1(t+ 1) ∧ ... ∧A1

T1
◦\ζ1(t+ T1) ∧ C1 ◦\z1(t)∧

A1
γ ◦\ζ1(t+ d− 1)

(29)
Because of being nonincreasing, this is the same as the right
hand side of (24). In the next step, the optimal control
for S2 under the condition that the optimal behavior of
S1 is preserved is calculated. Recall that the evolution of
the system with resource sharing is given by (7) and (8).
Since the priority of S2 is greater than the one of Sk for
k = 3, ...,m, in order to compute the optimal control of S2,
all the systems with lower priority are neglected. In this case,
the number of available resources at each instant of time for
S1 is denoted β1(t) and can be calculated by:

β1(t) = O1
∗(t−d)◦/I1∗ (t−1)⊗O2(t−d)◦/I2(t−1)⊗n. (30)

Note that β1(t) is equivalent to α1(t) in (6) under the
condition that S1 is working under the optimal control u1∗,
and Sk for k = 3, ...,m is neglected. As S2 may not degrade
the performance of S1, the solution of (7), (8) for k = 1 and
α1 = β1 is x1∗, i.e.,

x1∗(t) = (A1
1 ⊕A1

β(t))x1∗(t− 1)⊕ ...⊕A1
T1
x1∗(t− T1)⊕⊕M1

j=0(B1
ju

1
∗(t− j))

(31)
where

(A1
β(t))i,j =

{
β1(t) if i = j and x1i = I1

ε else. (32)

For (28) and (31) to be equivalent, we require

x1∗(t) � A1
β(t)⊗ x1∗(t− 1) (33)

which is equivalent to:

I1∗ (t) � β1(t)⊗ I1∗ (t− 1) (34)

Inserting (30) into (34) leads to:

I1∗ (t) � O1
∗(t−d)◦/I1∗ (t−1)⊗O2(t−d)◦/I2(t−1)⊗n⊗I1∗ (t−1)

(35)
Recalling the fact that in Zmin, ◦/ corresponds to subtraction
in the standard algebra, (35) leads to

I1∗ (t) � O1
∗(t− d)⊗O2(t− d)◦/I2(t− 1)⊗ n,

or, equivalently,

I2(t− 1) � O1
∗(t− d)◦/I1∗ (t)⊗ n⊗O2(t− d). (36)

From (26),

γ2(t) = O1
∗(t− d)◦/I1∗ (t)⊗ n.

Then,
I2(t− 1) � γ2(t)⊗O2(t− d) (37)

Because of (25), (37) can be written in the following form:

x2(t− 1) � A2
γ(t)⊗ x2(t− d). (38)

From (38), we obtain x2(t − d) � A2
γ(t) ◦\x2(t − 1) or,

equivalently,

x2(t) � A2
γ(t+ d) ◦\x2(t+ d− 1). (39)

Hence, preserving the optimal behavior of S1 while running
S2 is guaranteed if (39) holds. On the other hand, the
following constraint must also hold for S2 (see(19a)):

x2(t) � A2
1 ◦\x2(t+ 1) ∧ ... ∧A2

T2
◦\x2(t+ T2) ∧ C2 ◦\z2(t).

(40)
(39) and (40) lead to:

x2(t) �
T2∧
l=1

(A2
l ◦\x2(t+l))∧C2 ◦\z2(t)∧A2

γ(t+d) ◦\x2(t+d−1)

(41)
As x2(t) must be a nonincreasing function, the following
constraint also holds:

x2(t) � x2(t+ 1). (42)

The greatest solution of (41) which satisfies (42) is denoted
ζ2(t) and satisfies:

ζ2(t) = (
∧T2

l=1(A2
l
◦\ζ2(t+ l)) ∧ C2 ◦\z2(t)∧

A2
γ(t+ d) ◦\ζ2(t+ d− 1))⊕ ζ2(t+ 1)

(43)

and the optimal control for S2 is given by:

u2∗(t) = B2
0 ◦\ζ2(t) ∧ ... ∧B2

M2
◦\ζ2(t+M2). (44)

Iterating this procedure over subsystems with lower priority,
i.e., k = 3, ...,m, results in (24).
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Example 3: Consider the system (10) shown in Fig. 4.
The reference signals are given by:

z1 = eδ42 ⊕ 1δ46 ⊕ 3δ54 ⊕ 6δ+∞,
z2 = eδ39 ⊕ 1δ50 ⊕ 2δ54 ⊕ 3δ+∞,
z3 = eδ48 ⊕ 1δ50 ⊕ 2δ54 ⊕ 4δ+∞,
z4 = eδ54 ⊕ 2δ+∞.

According to (23) to (26), the optimal control for S1 (the
subsystem with the highest priority) is given by:

{
ζ1(t) = A1

2 ◦\ζ1(t+ 2) ∧A1
3 ◦\ζ1(t+ 3) ∧ C1 ◦\z1(t)

u1∗ = B1
0 ◦\ζ1(t),

which leads to:

u1∗ = eδ38 ⊕ 1δ41 ⊕ 2δ43 ⊕ 3δ46 ⊕ 4δ51 ⊕ 6δ+∞

The corresponding optimal evolution of S1 can then be
computed by:{
x1∗(t) = A1

2 ⊗ x2∗(t− 2)⊕A1
3 ⊗ x1∗(t− 3)⊕B1

0 ⊗ u1∗(t)
y1∗(t) = C1 ⊗ x1∗(t),

resulting in

y1∗ = eδ41 ⊕ 1δ44 ⊕ 2δ46 ⊕ 3δ49 ⊕ 4δ54 ⊕ 6δ+∞ � z1

From the optimal behavior of S1, γ2(t) can be calculated
as:

γ2(t) = x12∗(t− 2)◦/x11∗(t)⊗ 2.

The optimal control for S2 is given by:
ζ2(t) = (A2

2 ◦\ζ2(t+ 2) ∧A2
5 ◦\ζ2(t+ 5)

∧A2
γ(t+ 2) ◦\ζ2(t+ 1) ∧ C2 ◦\z2(t))⊕ ζ2(t+ 1)

u2∗(t) = B2
0 ◦\ζ2(t)

with A2
γ(t) =

(
ε γ2(t)
ε ε

)
. This leads to:

u2∗ = eδ27 ⊕ 1δ31 ⊕ 2δ34 ⊕ 3δ+∞,
y2∗ = eδ32 ⊕ 1δ36 ⊕ 2δ39 ⊕ 3δ+∞ � z2.

This procedure is repeated to calculate control for k = 3, 4.
For k = 3

γ3(t) = x22∗(t− 2)◦/x21∗(t)⊗ x12∗(t− 2)◦/x11∗(t)⊗ 2,

and the control for S3 is given by:
ζ3(t) = (A3

2 ◦\ζ3(t+ 2) ∧A3
6 ◦\ζ3(t+ 6)∧

A3
γ(t+ 2) ◦\ζ3(t+ 1) ∧ C3 ◦\z3(t))⊕ ζ3(t+ 1)

u3∗(t) = B3
0 ◦\ζ3(t)

with A3
γ(t) =

(
ε γ3(t)
ε ε

)
. This leads to:

u3∗ = eδ11 ⊕ 1δ15 ⊕ 2δ18 ⊕ 3δ23 ⊕ 4δ+∞,
y3∗ = eδ17 ⊕ 1δ21 ⊕ 2δ24 ⊕ 3δ29 ⊕ 4δ+∞ � z3,

For k = 4, we get:

γ4(t) = x32∗(t− 2)◦/x31∗(t)⊗ x22∗(t− 2)◦/x21∗(t)⊗
x12∗(t− 2)◦/x11∗(t)⊗ 2,

and the control for S4 is given by:
ζ4(t) = (A4

2 ◦\ζ4(t+ 2) ∧A4
4 ◦\ζ4(t+ 4)∧

A4
γ(t+ 2) ◦\ζ4(t+ 1) ∧ C4 ◦\z4(t))⊕ ζ4(t+ 1)

u4∗(t) = B4
0 ◦\ζ4(t)

with A4
γ(t) =

(
ε γ4(t)
ε ε

)
. This leads to:

u4∗ = eδ5 ⊕ 1δ9 ⊕ 2δ+∞,
y4∗ = eδ9 ⊕ 1δ13 ⊕ 2δ+∞ � z4

V. CONCLUSION

In this paper, we have discussed modeling and control of
a class of timed Petri nets with resource sharing problems.
In particular, several subsystems, each described by a timed
event graph (TEG) compete for n resources modeled by
tokens in a joint place. We assume a given prioritization
policy and model the resulting system in the min-plus
algebra. Under this policy, we provide optimal control (in the
corresponding lexicographical order) for the overall system.
In particular, the number of firings of the input transition of
the top priority subsystem is, at any instant of time, as small
as possible while guaranteeing that the output transition fires
at least as often as specified by a given reference signal.
The subsystem with the k-th priority, k ≥ 2, is subject
to the same notion of optimality, but is restrained by the
temporal evolution of the k − 1 subsystems with higher
priority. Although, for notational simplicity, we discussed our
modeling and control approach for the case where the tokens
of only one place are shared, and where only one transition
in each subsystem has an incoming (outcoming) arc from
(to) the shared place, this can be readily translated to more
general scenarios.
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