Conditions for stability of droop-controlled inverter-based microgrids

Johannes Schiffer a,1, Romeo Ortega b, Alessandro Astolfi c,d, Jörg Raisch a,e, Tevfik Sezi f

a Technische Universität Berlin, Einsteinufer 11, 10587 Berlin, Germany
b Laboratoire des Signaux et Systèmes, École Supérieure d’ Electricité (SUPELEC), Gif-sur-Yvette 91192, France
c Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
d Dipartimento di Civile e Ingegneria Informatica, University of Rome, Tor Vergata, 00133 Rome, Italy
e Max-Planck-Institut für Dynamik komplexer Systeme, Sandtorstr. 1, 39106 Magdeburg, Germany
f Siemens AG, Smart Grid Division, Energy Automation, Humboldtstr. 59, 90459 Nuremberg, Germany

Article history:
Received 8 May 2013
Received in revised form 21 November 2013
Accepted 19 May 2014
Available online 2 September 2014

Keywords:
Microgrid control
Microgrid stability
Smart grid applications
Inverters
Droop control
Port-Hamiltonian systems
Power sharing

Abstract

We consider the problem of stability analysis for droop-controlled inverter-based microgrids with meshed topologies. The inverter models include variable frequencies as well as voltage amplitudes. Conditions on the tuning gains and setpoints for frequency and voltage stability, together with desired active power sharing, are derived in the paper. First, we prove that for all practical choices of these parameters global boundedness of trajectories is ensured. Subsequently, assuming the microgrid is lossless, a port-Hamiltonian description is derived, from which sufficient conditions for stability are given. Finally, we propose for generic lossy microgrids a design criterion for the controller gains and setpoints such that a desired steady-state active power distribution is achieved. The analysis is validated via simulation on a microgrid based on the CIGRE (Conseil International des Grands Réseaux Electriques) benchmark medium voltage distribution network.

1. Introduction

Motivated by environmental, economic and technological aspects, the penetration of renewable energy sources into the electrical networks is increasing worldwide. Most of these sources are small-scale distributed generation (DG) units connected at the low voltage (LV) and medium voltage (MV) levels via alternating current (AC) inverters. As a consequence, the power generation structure is moving from purely large, centralized plants to a mixed generation pool consisting of conventional large plants and smaller distributed generation units. Since, in addition, the physical characteristics of inverters largely differ from the characteristics of conventional electrical generators (i.e., synchronous generators (SGs)), new concepts and strategies to operate the electric power system that ensure a reliable and stable operation are needed.

The microgrid concept represents one promising solution to address these issues by facilitating local integration of renewable energy sources (Hatzigiargyriou, Asano, Iravani, & Marnay, 2007; Lasseter, 2002). In general, a microgrid gathers a combination of generation units, loads and energy storage elements at distribution level into a locally controllable system, which can be operated in a decentralized and completely isolated manner from the main transmission system. An autonomous or islanded microgrid is operated in such mode. The microgrid concept has been identified as a key component in future electrical networks (Farhangi, 2010). Furthermore, it is envisioned to greatly contribute to the implementation of numerous smart grid functions (Lasseter, 2011).

In this work we consider three important problems in such networks: frequency stability, voltage stability and power sharing. Power sharing is understood as the ability of the local controllers of the individual generation sources to achieve a desired steady-state
distribution of their power outputs relative to each other, while satisfying the load demand in the network. The relevance of this control objective lies within the fact that it allows to prespecify the utilization of the generation units in operation.

A control technique widely used to address the problem of active power sharing in large power systems is droop control, also referred to as power-speed characteristic (Kundur, 1994). In droop control the current value of the rotational speed of each SG in the network is monitored locally to derive how much mechanical power each SG needs to provide. From a control perspective, droop control is a decentralized proportional controller where the control gain (known as droop gain) specifies the steady-state power distribution in the network. Since performance under droop control is satisfactory for large SG-based systems, this technique has been adapted to inverter-based grids (Barklund, Pogaku, Prodanovic, Hernandez-Aramburu, & Green, 2008; Chandorkar, Divan, & Adapa, 1993; Coelho, Cortizo, Garcia, 2002; Soutlanis, Papathanasiou, & Hatzigiargiou, 2007).

In large SG-based transmission systems droop control is usually only applied to obtain a desired active power distribution, while the voltage amplitude at a generator bus is regulated to a nominal voltage setpoint via an automatic voltage regulator (AVR) acting on the excitation system of the SG. In microgrids the power lines are typically relatively short. Then, the AVR employed at the transmission level is, in general, not appropriate because slight differences in voltage amplitudes can cause high reactive power flows. As a consequence, the reactive power sharing among generation units cannot be ensured. Therefore, droop control is typically applied in microgrids to achieve also a desired reactive power distribution. The most common approach is to control the voltage amplitude with a proportional control, the feedback signal of which is the reactive power generation relative to a reference setpoint (Chandorkar et al., 1993; Coelho et al., 2002). See the recent survey (Guerrero, Loh, Chandorkar, & Lee, 2013) for further details.

The paper is devoted to the stability analysis of droop-controlled microgrids operated with the control laws given in Chandorkar et al. (1993). These droop control laws are heuristic control laws derived under the assumption of a dominantly inductive network, i.e., for power lines with small R/X ratios, and they are (by far) the most commonly used ones in this scenario. If the network lines possess large resistive components, the standard droop control exhibits limitations (Guerrero et al., 2013). In this case, several modified droop controls (De Brabandere et al., 2007; Guerrero, Matas, de Vicuna, Castilla, & Miret, 2007; Zhong, 2013) have been proposed. Even in the presence of non-negligible line resistances the application of the droop controls of Chandorkar et al. (1993) and Coelho et al. (2002) can be justified, on one hand, via the virtual impedance approach (Guerrero, Garcia de Vicuna, Matas, Castilla, & Miret, 2005) while, on the other hand, invoking their analogy to conventional droop control (Engler, 2005) of SG-based grids.

As in any conventional power system, stability is understood in the sense of achieving asymptotic synchronization of the frequencies of all DG units, with the angle differences not exceeding π and constant generated voltages (Kundur et al., 2004). Since the synchronization frequency is the same for all DG units and their dynamics depend on the angle differences, it is possible to translate – via a time-dependent coordinate shift – the synchronization objective into a (standard) equilibrium stabilization problem, which is the approach adopted in the paper.

Stability analysis of droop-controlled microgrids has traditionally been carried out by means of detailed numerical small-signal analysis as well as extensive simulations and experimental studies aiming to characterize a range for the droop gains guaranteeing system stability (Barklund et al., 2008; Coelho et al., 2002; Pogaku, Prodanovic, & Green, 2007; Soutlanis et al., 2007). As pointed out in Guerrero et al. (2013), most work on microgrid stability has so far focused on radial microgrids, while stability of microgrids with meshed topologies and decentralized controlled units is still an open research area. For radial lossless microgrids, and under the assumption of constant voltage amplitudes, analytic conditions for proportional power sharing and synchronization of lossless microgrids with first-order inverter models have been recently derived – applying results of the theory of coupled oscillators – in Simpson-Porco, Dörfler, and Bullo (2013a). Conditions for voltage stability for a lossless parallel microgrid with one common load have been derived in Simpson-Porco, Dörfler, and Bullo (2013b).

For general meshed networks, with the aim to schedule the droop coefficients under the consideration of frequency droop, an iterative procedure based on bifurcation theory has been proposed in Díaz, Gonzalez-Moran, Gomez-Aleixandre, and Díez (2010). Under the assumption of constant voltage amplitudes, analytic synchronization conditions for a lossy meshed microgrid with distributed rotational and electronic generation are derived in Schiffer, Goldin, Raisch, and Sezi (2013) using ideas from second order consensus algorithms. A decentralized LMI-based control design for lossy meshed inverter-based networks guaranteeing overall network stability for a nonlinear model considering variable voltage amplitudes and phase angles, while accounting for power sharing, is provided in Schiffer, Anta, Trung, Raisch, and Sezi (2012).

The main contribution of the present paper is to give conditions on the droop gains to ensure stability of droop-controlled inverter-based microgrids with general meshed topology and inverter models with variable frequencies as well as variable voltage amplitudes. In contrast to Schiffer et al. (2013) and Simpson-Porco et al. (2013a,b), no assumptions of constant voltage amplitudes or small phase angle differences are made. In this more general scenario, the graph theoretic methods employed in the aforementioned papers are not directly applicable. Instead, we adopt a classical Lyapunov-like approach for analysis of stability of equilibria and boundedness of trajectories. Following the interconnection and damping assignment passivity-based control approach (Ortega, van der Schaft, Maschke, & Escobar, 2002; Schiffer, Ortega, Astolfi, Raisch, & Sezi, 2014), we represent the lossless microgrid system in port-Hamiltonian form (van der Schaft, 2000) to identify the energy-Lyapunov function and give conditions for stability of the frequency synchronization equilibrium state.

The present work extends our results in Schiffer et al. (2014) in several regards: first, conditions for global boundedness are given for lossy microgrids; second, we relate the spectral properties of the local network couplings between the phase angles and the active power flows of the microgrid in port-Hamiltonian form (which has a reduced state vector in relative coordinates) to those of the microgrid in absolute coordinates; third, making use of the global boundedness result, a relaxed stability condition for a lossless microgrid under a specific parameter selection of the controller gains and setpoints of the frequency droop control is derived; finally, the theoretical analysis is illustrated via detailed simulation scenarios.

The remainder of the paper is organized as follows. The network model is presented in Section 2. In Section 3 we give the model of the inverter and the droop control. Section 4 presents conditions for global boundedness of trajectories. Sufficient conditions for stability for lossless microgrids are established in Section 5. In Section 6 we propose a selection of the droop gains and setpoints, similar to the one given in Simpson-Porco et al. (2013a), that ensures the DG units share (in steady-state) the active power according to a specified pattern. Compared to Simpson-Porco et al. (2013a), we extend the proof to lossy networks, i.e., networks with nonzero conductances. Our analysis is validated in Section 7 with
2. Network model

We consider a generic meshed microgrid and, following the classical approach in conventional power system studies, assume that loads are modeled by constant impedances (Varaiya, Wu, & Chen, 1985). This leads to a set of nonlinear differential-algebraic equations. Then a network reduction (called Kron reduction Kundur, 1994) is carried out to eliminate all algebraic equations corresponding to loads and obtain a set of differential equations. We assume this process has been carried out and work with the Kron-reduced network.

The Kron-reduced microgrid is formed by $n \geq 1$ nodes, each of which represents a DG unit interfaced via an AC inverter. We denote the set of network nodes by \bar{n} and associate a time-dependent phase angle $\delta_i : \mathbb{R}_{\geq 0} \to \mathbb{S}$, as well as a voltage amplitude $V_i : \mathbb{R}_{\geq 0} \to \mathbb{R}$, to each node $i \in \bar{n}$ in the microgrid. Two nodes i and k of the microgrid are connected via a complex nonzero admittance $Y_{ik} := G_{ik} + jB_{ik} \in \mathbb{C}$ with conductance $G_{ik} \in \mathbb{R}$ and susceptance $B_{ik} \in \mathbb{R}$. For convenience, we define $Y_{ik} := 0$ whenever i and k are not directly connected. The set of neighbors of a node $i \in \bar{n}$ is denoted by $\mathcal{N}_i := \{k \mid k \in \bar{n}, i \neq k, Y_{ik} \neq 0\}$. For ease of notation, we write angle differences as $\delta_{ik} := \delta_i - \delta_k$.

We assume that the microgrid is connected, i.e., that for all pairs $(i, k) \in \bar{n} \times \bar{n}$, $i \neq k$, there exists an ordered sequence of nodes from i to k such that any pair of consecutive nodes in the sequence are connected by a power line represented by an admittance. This assumption is reasonable for a microgrid, unless severe line outages separating the system into several disconnected parts occur.

The active and reactive power flows $P_{ik} : \mathbb{S}^2 \times \mathbb{S}^2_\geq 0 \to \mathbb{R}$ and $Q_{ik} : \mathbb{S}^2 \times \mathbb{S}^2_\geq 0 \to \mathbb{R}$ from node $i \in \bar{n}$ to node $k \in \bar{n}$ are then given by Kundur (1994)

\[
P_{ik}(t) = G_{ik}V_i^2(t) - V_i(t)V_k(t)(G_{ik}\cos(\delta_{ik}(t)) + B_{ik}\sin(\delta_{ik}(t))),
\]
\[
Q_{ik}(t) = -B_{ik}V_i^2(t) - V_i(t)V_k(t)(G_{ik}\sin(\delta_{ik}(t)) - B_{ik}\cos(\delta_{ik}(t))).
\]

The overall active and reactive power flows $P_i : \mathbb{S}^2 \times \mathbb{S}^2_\geq 0 \to \mathbb{R}$ and $Q_i : \mathbb{S}^2 \times \mathbb{S}^2_\geq 0 \to \mathbb{R}$ at a node $i \in \bar{n}$ are obtained as
\[
P_i := \tilde{G}_i V_i^2 - \sum_{k \sim \mathcal{N}_i} V_k V_i (G_{ik}\cos(\delta_{ik}) + B_{ik}\sin(\delta_{ik})),
\]
\[
Q_i := -B_i V_i^2 - \sum_{k \sim \mathcal{N}_i} V_k V_i (G_{ik}\sin(\delta_{ik}) - B_{ik}\cos(\delta_{ik})),
\]

where $\tilde{G}_i := G_i + \sum_{k \sim \mathcal{N}_i} G_{ik}$ and $\tilde{B}_i := B_i + \sum_{k \sim \mathcal{N}_i} B_{ik}$.

3 An underlying assumption to this model is that whenever the inverter connects an intermittent renewable generation source, e.g., a photovoltaic plant or a wind plant, to the network, this is equipped with some sort of storage (e.g., flywheel, battery). Thus, it can increase and decrease its power output within a certain range.
Replacing (4) and (5) in (3) yields the closed-loop system
\begin{align}
\dot{\tau}_i &= \omega_d - k_h (P_i^m - P_i^d), \\
\tau_i \dot{P}_i^m &= -P_i^m + P_i, \\
\tau_i \dot{V}_i &= -V_i + V_i^d + k_0 (Q_i^m - Q_i^d), \\
\tau_i \dot{Q}_i^m &= -Q_i^m + Q_i.
\end{align}

In general \(\tau_i \ll \tau_v \), hence we assume in the sequel \(\tau_v = 0 \). Setting \(\tau_v = 0 \) in (6) yields the algebraic equation \(V_i = V_i^d + k_0 (Q_i^m - Q_i^d) \). Recall that \(\dot{\tau}_i = \omega_i = \omega_d - k_h (P_i^m - P_i^d) \). Differentiating \(\omega_i \), respectively \(V_i \), with respect to time gives \(\dot{\omega}_i = -k_h \dot{P}_i^m \), respectively \(\dot{V}_i = -k_0 \dot{Q}_i^m \). Using at first (6) to substitute \(\dot{P}_i^m \), respectively \(\dot{Q}_i^m \), and subsequently the indicated equations for \(\omega_i \), respectively \(V_i \), to substitute \(P_i^m \), respectively \(Q_i^m \), finally yields
\begin{align}
\dot{\tau}_i &= \omega_i, \\
\tau_i \dot{P}_i^m &= -P_i^m + P_i, \\
\tau_i \dot{V}_i &= -V_i + V_i^d + k_0 (Q_i^m - Q_i^d), \\
\tau_i \dot{Q}_i^m &= -Q_i^m + Q_i.
\end{align}

Remark 3.1. The desired power setpoints for active and reactive powers \(P_i^d \) and \(Q_i^d \), \(i \sim \bar{n} \), are assumed to be transmitted to each inverter by a high-level control, i.e., typically a secondary control or energy management system.

Remark 3.2. Since an inverter may connect a pure storage device, e.g., a battery, to the network, \(P_i^d \) can also take negative values. In that case, the storage device is charged depending on the excess power available in the network and thus functions as a frequency and voltage dependent load. In the sequel, we refer to such an operation mode as charging mode.

Remark 3.3. In Schiffer et al. (2013) it is proven that the dynamics of an inverter with frequency droop control and the swing equation dynamics of an SG are equivalent. Consequently, an inverter operated in voltage source mode and with frequency droop achieves a behavior similar to that of an SG with respect to frequency, which is desired in many microgrid applications (Engler, 2005; Lasseter, 2002).

Remark 3.4. There are several other alternative droop control schemes proposed in the literature, e.g. Guerrero et al. (2013, 2007) and Zhong (2013). The one given in (4) is the most common one for dominantly inductive networks, as well as the one most compatible with the operation of conventional power systems (Engler, 2005). We therefore restrict our analysis to these control laws, commonly referred to as “conventional droop control”.

4. Boundedness of trajectories

The proposition below gives conditions for global boundedness of the trajectories of the system (9), (1), which we recall lives in the set
\[M := S^n \times R^n \times R_{\geq 0}^n. \]

To establish our result, we need the following assumption on the network susceptances that particularly holds for dominantly inductive networks. The droop controls (4) are predominantly employed in such networks.

Assumption 4.1.
\[\hat{B}_i \leq 0 \quad \text{and} \quad B_k \leq 0, \quad i \sim \bar{n}, \quad k \sim \bar{n}. \]

Proposition 4.2. Consider the system (9), (1) with Assumption 4.1. The set \(M \) defined in (10) is invariant and all trajectories of (9), (1) are bounded if \(V_i^d \), \(k_0 \), and \(Q_i^d \) are chosen such that
\[V_i^d + k_0 Q_i^d > 0, \quad i \sim \bar{n}. \]

Proof. From (7), (1), write \(\tau_i \dot{V}_i = f_0(\delta, V) \), for some function \(f_0 : S^n \times R_{\geq 0}^n \to R \). Note that
\[f_0(V, \delta)|_{V_i=0} = V_i^d + k_0 Q_i^d, \]
which, under condition (12), is positive. Hence, the following implication is true
\[V_i(0) > 0 \Rightarrow V_i(t) > 0, \]
for all \(t \geq 0 \). This proves that the set \(M \) is invariant.

To establish boundedness of solutions define the matrix \(\Gamma := \text{diag}(\tau_0/k_0) \), \(i \sim \bar{n} \) and the function \(W : R^n \to R_{>0} \)
\[W(V) = \| \Gamma V \|_1 = \sum_{i=1}^n \frac{\tau_0}{k_0} V_i, \]
with \(\| \cdot \|_1 \) the 1-norm. Then,
\[\dot{W} = \sum_{i=1}^n \left(\frac{1}{k_0} (-V_i + V_i^d) - (Q_i(\delta, V) - Q_i^d) \right) \]
\[\leq -\kappa_1 W + \kappa_2 - V^T \mathcal{T}(\delta) V, \]
where
\[\kappa_1 := \min_{i \sim \bar{n}} \left\{ \frac{1}{\tau_0} \right\}, \quad \kappa_2 := \sum_{i=1}^n \left(\frac{1}{k_0} V_i^d + Q_i^d \right), \]
and \(\mathcal{T} : S^n \to R^{n \times n} \) with
\[\mathcal{T}(\delta) u_i := -B_{ik}, \quad (\mathcal{T}(\delta))_{ik} := B_{ik} \cos(\delta_{ik}), \quad i \neq k. \]

Here, we have used the fact that, as \(G_{ik} = G_{ki}(1) \) implies that
\[\sum_{i=1}^n Q_i = \sum_{i=1}^n \left(-B_{ik} V_i^d + \sum_{k=1}^n B_{ik} V_i V_k \cos(\delta_{ik}) \right), \]
which are the reactive power losses in the network.

Since \(B_{ik} = B_{ki}, \mathcal{T}(\delta) \) is symmetric and (2) together with (11) implies that
\[\mathcal{T}(\delta) \geq n \kappa_1 \Gamma^2, \]
for some \(\kappa_3 \geq 0 \). Hence
\[\dot{W} \leq -\kappa_1 W + \kappa_2 - \kappa_3 W^2, \]
where the third right-hand term follows from
\[nV^T \Gamma^2 V \geq \|V\|_1^2 = W^2(V). \]
Assume \(\kappa_3 > 0 \). The differential equation
\[\dot{z} = -\kappa_1 z + \kappa_2 - \kappa_4 z^2, \quad z(0) = z_0, \]
is a scalar differential Riccati equation with constant coefficients, which has the solution
\[z(t) = \frac{2k_2 + z_0 - \kappa_4}{\kappa_1 + \kappa_4 + 2k_3 z_0} \quad \text{with} \quad \kappa_4 := 4k_2 \kappa_3 + \kappa_1^2. \]
Furthermore,
\[\lim_{t \to \infty} z(t) = \frac{2k_2 + z_0 - \kappa_1 + \kappa_4}{\kappa_1 + \kappa_4 + 2k_3 z_0}. \]
From the Comparison Lemma Khalil (2002) we then have for \(W(V(0)) \leq z_0 \)
\[\sum_{i=1}^{n} \frac{t_n}{k_i} V_i(t) \leq z(t), \]
hence, together with (15), \(V \in \mathcal{L}_\infty \). This, together with (1), implies that \(P \in \mathcal{L}_\infty \). Finally, \(\omega \in \mathcal{L}_\infty \) follows from (7), which shows that \(\omega_0 \) is the output of a linear time invariant (LTI) asymptotically stable system with bounded input.

If \(\kappa_3 = 0 \) we have \(W \leq -\kappa_1 W + \kappa_2 \), and the proof follows immediately.

Remark 4.3. Condition (12) in Proposition 4.2 has a clear physical interpretation. From the dynamics of \(V_i \) in (7) we see that the equilibrium voltage is given by
\[V_i^e = V_i^d - k_i (Q_i^d - Q_i^s), \]
where \(Q_i^d \) is the reactive power injected in steady-state to the \(i \)-th bus. Hence, (12) requires that the gains \(k_i \) and the setpoints \(V_i^d \) and \(Q_i^d \) of the voltage droop control (4) are chosen such that \(V_i^d > 0 \), even if there is zero reactive power injection to the \(i \)-th bus. Notice that condition (12) is satisfied for all \(k_i \) if \(Q_i^d \geq 0 \).

5. Stability for lossless microgrids

In this section we derive conditions for stability for lossless microgrids, i.e., \(G_k = 0 \), \(i \sim \bar{n} \), \(k \sim \bar{n} \). The assumption of lossless line admittances may be justified as follows: in MV and LV networks the line impedance is usually not purely inductive, but has a non-negligible resistive part. On the other hand, the inverter output impedance is typically inductive (due to the output inductance and/or the possible presence of an output transformer). Under these circumstances, the inductive parts dominate the resistive parts.

We only consider such microgrids and absorb the inverter output admittance (together with the possible transformer admittance), \(Y_k \), into line admittances, \(Y_k \), while neglecting all resistive effects. This assumption is further justified for the present analysis, since the droop control laws introduced in (4) are mostly used in networks with dominantly inductive admittances (Guerro et al., 2013, 2007).

Therefore, we make the following assumption on the network admittances.

Assumption 5.1. \(G_k = 0 \) and \(B_k \leq 0 \), \(i \sim \bar{n} \), \(k \sim \bar{n} \).

By making use of Assumption 5.1, the power flow equations (1) for a lossless microgrid reduce to
\[P_i = \sum_{k=\bar{n}}^{n} |B_{ik}| V_k V_i \sin(\delta_{ik}), \]
\[Q_i = |B_{ik}| V_i^2 - \sum_{k=\bar{n}}^{n} |B_{ik}| V_k V_i \cos(\delta_{ik}). \]

Remark 5.2. The need to introduce the, sometimes unrealistic, assumption of lossless admittances has a long history in power systems studies. It appears in transient stability studies, where the presence of transfer conductances hampers the derivation of energy-Lyapunov functions (Varaiya et al., 1985). Although there has been progress in addressing this issue (Bretas & Alberto, 2003; Dörfler & Bullo, 2012), to the best of our knowledge no analytic solution for power systems with variable frequencies as well as variable voltage amplitudes is available. See also Ortega, Galaz, Astolfi, Sun, and Shen (2005) for an illustration of the deleterious effect of line losses on field excitation controller design.

Remark 5.3. In the case of the Kron-reduced network, we are aware that, in general, the reduced network admittance matrix does not permit to neglect the conductances and our stability results might therefore be inaccurate (Varaiya et al., 1985). Alternatively, one could consider the idealized scenario in which part of the inverter-interfaced storage devices are being charged, hence acting as loads and all constant impedance loads are neglected. Another approach is to use other, possibly dynamic, load models instead of constant impedances in the so-called structure preserving power system models. However, in the presence of variable voltages the load models are usually, somehow artificially, adapted to fit the theoretical framework used for the construction of energy-Lyapunov functions, see, e.g., Davy and Hiskens (1997) and Guedes, Silva, Alberto, and Bretas (2005).

5.1. Synchronized motion

To state the main result of this section we need the following natural power-balace feasibility assumption.

Assumption 5.4. There exist constants \(\delta^s \in \Theta, \omega^s \in \mathbb{R} \) and \(V^* \in \mathbb{R}_0^* \), where
\[\Theta := \{ \delta \in \mathbb{D}^n | |\delta_k| < \pi/2, i \sim \bar{n}, k \sim \bar{n} \}, \]
such that
\[P_{1} = 1_n \omega^s d - 1_n \omega^s f + K_0 \{ P(\delta^s, V^s) - P^d \} = 0, \]
\[V^s - V^d + K_0 \{ Q(\delta^s, V^s) - Q^d \} = 0. \]

Under Assumption 5.4, the motion of the system (9), (1) starting in \((\delta^s, 1_n \omega^s, V^s) \) is given by
\[\delta^s(t) = \text{mod}_{2\pi} \{ \delta^s + 1_n \omega^s t \}, \]
\[\omega^s(t) = 1_n \omega^s, \]
\[V^s(t) = V^s, \]
where the operator \(\text{mod}_{2\pi} \{ \cdot \} \) is added to respect the topology of the system. This desired motion is called synchronized motion and \(\omega^s \) is the synchronization frequency.

\(^4\) The operator \(\text{mod}_{2\pi} \{ \cdot \} : \mathbb{R} \to \{0, 2\pi\} \), is defined as follows: \(y = \text{mod}_{2\pi} \{ x \} \) yields \(y = x - k2\pi \) for some integer \(k \) with \(\text{sign}(y) = \text{sign}(x) \) and \(y \in \{0, 2\pi\} \).
Remark 5.5. As done in Simpson-Porcu et al. (2013a), where a similar analysis is made for lossless networks with first-order inverter dynamics, it is possible to uniquely determine ω^i. Towards this end, recall the well-known fact that in a lossless power system
$$\sum_{i=1}^{n} P_i = 0.$$
Thus, replacing the synchronized motion (17) in (7) and adding up all the nodes yield
$$\sum_{i=1}^{n} \frac{\omega_i}{k_i} = 0 \quad \Rightarrow \quad \omega^s = \omega^d + \sum_{i=1}^{n} \frac{P_i}{k_i} k_i.$$
It follows that $i \sim n$
$$\frac{1}{k_i} (\omega^s - \omega^d) - P_i = \sum_{k \sim i, k \neq i} \left(\frac{1}{k_j} (\omega^d - \omega^s) + P_i \right)$$
$$\Leftrightarrow \quad \omega^s - \omega^d - k_i P_i = \sum_{k \sim i, k \neq i} \frac{k_j}{k_i} (\omega^d - \omega^s + k_j P_i). \quad (18)$$
Remark 5.6. Clearly, the synchronized motion lives in the set $\Theta \times \mathbb{R}^n_{\omega^s} \times \mathbb{R}_0^{n}$.
Remark 5.7. There is not a unique desired synchronized motion of the system (9), (1) associated to the flow given in (16), but any motion with $\omega^s(t)$ and $V^s(t)$ as given in (17) and $\delta^s(t) = \text{mod}_{2\pi} \{\delta + \mathbb{I}_n \alpha t + \alpha \mathbb{I}_n \}$, $\alpha \in \mathbb{R}$ is a desired synchronized motion.

5.2. Error dynamics

The main result of this section is to give conditions on the setpoints and gains of the droop controller (4) such that the synchronized motion (17) is asymptotically stable, i.e., such that all trajectories of the system (9), (1) converge to the synchronized motion (17) (up to a uniform shift of all angles). To establish this result we make the important observation that the dependence with respect to δ of the dynamics (9), (1) is via angle differences δ_{ik}. This immediately leads to the following two implications: (i) the flow given in (16) is invariant to a shift in the δ coordinate of the form $\delta \sim \mathbb{I}_n \alpha o^s t$. Consequently, we can study the stability of the synchronized motion (17) in the coordinates $\text{col}(\tilde{\delta}(t), \tilde{\omega}(t), V(t)) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m$ with
$$\tilde{\omega}(t) \equiv \omega(t) - 1_\omega o \alpha^d,$$
$$\tilde{\delta}(t) \equiv \delta(0) + \int_0^t \tilde{\omega}(\tau) d\tau,$$
where – for convenience – we have also shifted the coordinate ω^s; (ii) convergence of the dynamics (9), (1) to the desired synchronized motion (17) (up to a uniform shift of all angles) is not determined by the value of the angles, but only by their differences. Hence, to study convergence to the synchronized motion (17) we can arbitrarily choose one node, say node n, as a reference node and express δ_{ik} for all $i \in \mathbb{N} \setminus \{n\}$ relative to $\tilde{\delta}_{ik}$ via the state transformation
$$\Theta := \mathbb{R}^3, \quad \mathcal{R} := [I_{n-1}, -I_{n-1}]. \quad (19)$$
This leads to a reduced system of order $3n - 1$ with $\theta = \text{col}(\theta_1, \ldots, \theta_{n-1})$ replacing $\tilde{\delta}$. For convenience, we define the constant 5
$$\theta_n := 0,$$
as well as
$$\theta_{ik} := \theta_i - \theta_k,$$
which clearly verifies $\theta_{ik} \equiv \delta_{ik}$ for $k \neq n$ and $\theta_{im} \equiv \theta_i$.

Furthermore, we introduce the constants
$$c_1 := 0, \quad c_2 := V^d + k_Q Q^d, \quad i \sim n. \quad (20)$$
Written in the new coordinates col(θ, $\tilde{\omega}$, V) $\in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_0$, the dynamics (9), (1) take the form
$$\begin{align*}
\dot{\tilde{\omega}}_i &= -k_i \sum_{k \sim i, k \neq i} V_i V_k |B_k| \sin(\theta_{ik}) + c_1, \\
\tau_i \dot{\tilde{\omega}}_i &= -k_i \sum_{k \sim i, k \neq i} V_i V_k |B_k| \sin(\theta_{ik}) + c_2, \\
\tau_i \dot{\tilde{V}}_i &= -V_i - k_Q \sum_{k \sim i, k \neq i} V_i V_k |B_k| \cos(\theta_{ik}) + c_2, \\
\forall i \in \mathbb{N} \setminus \{n\}.
\end{align*}$$

The reduced system (21)–(22) lives in the set $\mathcal{M} := \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_0$. Note that this system has an equilibrium at
$$x^* := \text{col}(\theta^s, \tilde{\omega}^s, V^s),$$
the asymptotic stability of which implies asymptotic convergence of all trajectories of the system (9), (1) to the synchronized motion (17) up to a uniform shift of all angles.

5.3. Main result

To streamline the presentation of the stability result we introduce the matrices $\mathcal{L} \in \mathbb{R}^{(n-1) \times (n-1)}$ and $\mathcal{W} \in \mathbb{R}^{(n-1) \times n}$ with entries
$$l_{ii} := \sum_{m=1}^{n} |B_{im}| V_i^m V_m^s \cos(\theta_{im}^s), \quad l_{ik} := -|B_{ik}| V_i^s V_k^s \cos(\theta_{ik}^s),$$
$$w_{ii} := \sum_{m=1}^{n} |B_{im}| V_m^i \sin(\theta_{im}^s), \quad w_{im} := |B_{im}| V_m^i \sin(\theta_{im}^s). \quad (24)$$
where $i \sim n \setminus \{n\}$, $k \sim n \setminus \{n\}$ and $m \sim n$, as well as
$$\mathcal{D} := \text{diag} \left(\frac{c_{2m}}{k_{0m} (V_{m}^{d})^2} \right) = \text{diag} \left(\frac{V_{m}^{d} + k_Q Q_{m}^{d}}{k_{0m} (V_{m}^{d})^2} \right) \in \mathbb{R}^{n \times n}. \quad (25)$$
We also recall the matrix \mathcal{T} defined in (13) and, with slight abuse of notation, denote by $\mathcal{T}(\theta^s)$ its evaluation at $\theta^s \in \mathbb{R}^{n-1}$ with entries $t_{ik} = |B_{ik}|$, $t_{ik} = -|B_{ik}| \cos(\theta_{ik}^s)$, $i \neq k$, $i \sim n$, $k \sim n$.

From (2), and under Assumption 5.1, it follows that $\mathcal{T}(\theta^s)$ is positive semidefinite.

Lemma 5.8. Consider the system (9), (1) with Assumptions 5.1 and 5.4. Then $\mathcal{L} > 0$.

Proof. Consider the vector P defined in (8) under Assumption 5.1 and let \tilde{L} be given by
$$\tilde{L} := \frac{\partial P}{\partial \tilde{\delta}} \bigg|_{(\delta^s, \tilde{\omega}^s, 0)} \in \mathbb{R}^{n \times n}, \quad (26)$$
with entries
\[\tilde{I}_i := \sum_{k \neq n} |V_{ik}V_{k}^*| \cos(\delta_{ik}), \quad \tilde{I}_k := -|B_{ik}|V_{ik}^* \cos(\delta_{ik}). \]

Clearly, from (24), \(\tilde{I}_i = I_i \) and \(\tilde{I}_k = I_k \) for \(k \neq n \). Furthermore, recall that the microgrid is connected by assumption. It is easily verified that under the given assumptions \(\tilde{L} \) is a symmetric Laplacian matrix of a connected graph with the properties (Goswili & Royle, 2001), see also, e.g., Schiffer et al. (2013) and Simpson-Porcari et al. (2013a),
\[\tilde{L} \gamma \mathbb{R} = 0, \quad \forall v \in \mathbb{R}^n \setminus \{v = \gamma \mathbb{R} \}, \quad \gamma \in \mathbb{R}. \]
Recall the matrix \(R \) defined in (19), let \(r := \begin{bmatrix} 0^T & \mathbb{1} \end{bmatrix} \) and note that
\[\tilde{L} \begin{bmatrix} r \end{bmatrix}^{-1} = \begin{bmatrix} L \begin{bmatrix} 0^{n-1} & \mathbb{1} \end{bmatrix}^{-1} \end{bmatrix} \begin{bmatrix} \mathbb{1}^T & 0^{n-1} \end{bmatrix} = \begin{bmatrix} \mathbb{L} & 0^{n-1} \end{bmatrix}, \]
where \(b = col(\tilde{I}_i) \in \mathbb{R}^{n(n-1)}, \quad i \sim \mathbb{R} \setminus \{n\} \). It follows from (27) and (28) that for any \(v := col(\theta, \mathbb{0}) \in \mathbb{R}^n, \quad \mathbb{θ} \in \mathbb{R}^{n(n-1)} \)
\[\tilde{v}^T \tilde{L} \begin{bmatrix} r \end{bmatrix}^{-1} \tilde{v} = \tilde{v}^T \mathbb{L} \tilde{v} = \mathbb{θ}^T \mathbb{L} \mathbb{θ} > 0. \]
Moreover, \(\mathbb{L} \) is symmetric. Hence, \(\mathbb{L} > 0 \).

It follows from (29) and the properties of spectra of symmetric matrices, see, e.g., Horn and Johnson (2012), that, under the standing assumptions of Lemma 5.8,
\[\sigma(\mathbb{L}) \subseteq \sigma(\tilde{L}) \setminus \{0\} \subset \mathbb{R}, \]
with \(\tilde{L} \) given in (26). Notice that the matrices \(\mathbb{L} \) and \(\tilde{L} \) correspond to the linearization of the active power flows at nodes \(i \sim \mathbb{R} \setminus \{n\} \) in the reduced system (21)–(22), respectively to the linearization of the active power flows at all nodes \(i \sim \mathbb{R} \) in the original system (9), (1). Hence, \(\mathbb{L} \), respectively \(\tilde{L} \), represent locally the network coupling strengths between the phase angles and the active power flows. Consequently, (30) states that the local coupling strengths between the phase angles and the active power flows in the reduced system (21)–(22) are contained within the local coupling strengths between the phase angles and the active power flows in the original system (9), (1).

We are now ready to state our main result.

Proposition 5.9. Consider the system (9), (1) with Assumptions 5.1 and 5.4. Fix \(\tau_p, \ k_p \) and \(\rho^d \), \(i \sim \mathbb{R} \). Select \(V_i^d, k_0 \), and \(Q_k^d \) such that
\[\mathbb{D} + \mathbb{T}(\mathbb{θ}) - \mathbb{W}^T \mathbb{L}^{-1} \mathbb{W} > 0. \]
Then the equilibrium \(x^* = col(\mathbb{θ}^*, \mathbb{θ}_0), \mathbb{V}^* \) of the system (21)–(22) is locally asymptotically stable.

Proof. To establish the claim we follow the interconnection and damping assignment passivity-based control approach (Ortega et al., 2002), and represent the system (21)–(22) in port-Hamiltonian form to identify the energy-Lyapunov function. Defining \(x := \col(\theta, \mathbb{0}, \mathbb{V}) \), we can write the system (21)–(22) as
\[\dot{x} = (J - R(x)) \mathbb{Y}H, \]
where the Hamiltonian \(H : \mathbb{R}^{(n-1) \times n \times n_0} \rightarrow \mathbb{R} \) is given by
\[H(x) = \sum_{i=1}^{n} \left(\frac{\tau_i}{2k_p} \mathbb{θ}_0^2 + \frac{1}{k_0}(V_i - c_i \ln(V_i)) + \frac{1}{2}|B_i|V_i^2 \right) \]
\[- \frac{1}{2} \sum_{k \sim \mathbb{R}} |V_k|B_{ik} \cos(\delta_{ik}) \]
\[\left(- \sum_{i=1}^{n-1} \frac{c_i}{k_p} \vartheta_i \right) \]
and the interconnection and damping matrices are
\[J = \begin{bmatrix} 0_{(n-1) \times (n-1)} & \mathbb{f} \end{bmatrix}, \quad R = \begin{bmatrix} 0_{2n \times 2n} \end{bmatrix}, \]
with \(\mathbb{f} = \begin{bmatrix} f_k \end{bmatrix} \in \mathbb{R}^{(n-1) \times l}, \quad k \sim \mathbb{R} \setminus \{n\}, \]
\[f_k = \frac{k_p}{\tau_p} \mathbb{E}_{(n-1)}, \quad \mathbb{E} \in \mathbb{R}^{(n-1) \times l}, \quad k \sim \mathbb{R} \setminus \{n\}, \]
\[R_{\mathbb{θ}} = \begin{bmatrix} 0 \end{bmatrix} \in \mathbb{R}^n, \]
\[R_{\mathbb{V}} = \begin{bmatrix} 0 \end{bmatrix} \in \mathbb{R}^n, \]
\[f_i \in \mathbb{R}, \quad i \sim \mathbb{R} \]. Note that \(J = -J^T \) and \(R \geq 0 \). Consequently,
\[H = -(\mathbb{V}H)^T \mathbb{Y}V \leq 0. \]
Therefore, \(x^* \) is a stable equilibrium of system (21)–(22) if \(H(x) \) has a strict local minimum at the equilibrium \(x^* \). To ensure the latter we show that \(\mathbb{V}H(x^*) = 0_{(n-1)} \) and \(\mathbb{H}(\mathbb{θ}) |_{\mathbb{θ} = 0} > 0 \). Now,
\[\mathbb{H}(\mathbb{θ}) |_{\mathbb{θ} = 0} = \begin{bmatrix} \mathbb{L} & 0_{n \times (n-1)} \end{bmatrix} \begin{bmatrix} \mathbb{A} & 0_{n \times n} \end{bmatrix} \begin{bmatrix} \mathbb{W}^T \mathbb{L}^{-1} \mathbb{W} \end{bmatrix} > 0, \]
where \(i \sim \mathbb{R} \setminus \{n\} \), \(l \sim \mathbb{R} \) and
\[a_i := \sum_{k \sim \mathbb{R}} |V_k|^2 |B_{ik}| \ln(\delta_{ik}), \quad \mathbb{b}_i := \sum_{k \sim \mathbb{R}} |V_k|^2 |B_{ik}| \ln(\delta_{ik}). \]
Hence, \(\mathbb{V}H(x^*) = 0_{(n-1)} \).

The Hessian of \(H(x) \) evaluated at \(x^* \) is given by
\[\mathbb{H}(x^*) = \frac{\partial^2 H(x^*)}{\partial x^2} = \begin{bmatrix} \mathbb{L} & \mathbb{W}^T \mathbb{L}^{-1} \mathbb{W} \end{bmatrix} + \mathbb{T}(\mathbb{θ}) \]
and is positive definite. Recall that Lemma 5.8 implies that, under the standing assumptions, \(\mathbb{L} \) is positive definite. Hence, the matrix (36) is positive definite if and only if
\[\mathbb{D} + \mathbb{T}(\mathbb{θ}) - \mathbb{W}^T \mathbb{L}^{-1} \mathbb{W} > 0, \]
which is condition (31).

Recalling (35) and the fact that \(R(x) \geq 0 \), we see that to prove asymptotic stability it suffices to show that – along the trajectories of the system (32) – the implication
\[R(x(t)) \mathbb{V}H(x(t)) \equiv 0_{(n-1)} \Rightarrow \lim_{t \rightarrow \infty} x(t) = x^* \]
holds. From (37) it follows that
\[\frac{\partial H}{\partial \mathbb{θ}} = 0_{n}, \quad \frac{\partial H}{\partial \mathbb{V}} = 0_{n}, \]
where the first condition implies \(\mathbb{θ} = \mathbb{θ}_0 \). Hence, \(\theta \) is constant. The second condition implies \(V \) constant. Therefore, the invariant set where \(H(x(t)) \equiv 0 \) is an equilibrium. To prove that this is the desired equilibrium \(x^* \) we recall that \(x^* \) is isolated minimum of \(H(x) \). Consequently, there is a neighborhood of \(x^* \) where no other equilibrium exists, completing the proof.
Condition (31) has the following physical interpretation: the droop control laws (4) establish a feedback interconnection linking the phase angles,δ_i, respectively,θ, with the active power flows,P, as well as the voltages,V, with the reactive power flows,Q.

The matrices \mathcal{Z} and \mathcal{T} (θ^0) represent then the network coupling strengths between the phase angles and the active power flows, respectively, the voltages and the reactive power flows. In the same way, \mathcal{W} can be interpreted as a local cross-coupling strength originating from the fact that $P \neq P(\delta)$ and $Q \neq Q(V)$, but $P = P(\delta, V)$ and $Q = Q(\delta, V)$.

Condition (31) states that to ensure local stability of the equilibrium x^i defined in (23) the couplings represented by \mathcal{Z} and \mathcal{T} (θ^0) have to dominate over the cross-couplings of the power flows contained in \mathcal{W}. If that is not the case the voltage variations have to be reduced by magnitudes of the gains k_{0i}, $i \in \hat{n}$.

Another possibility is to adapt Q^d and V^d. This does, however, not seem as appropriate in practice since these two parameters are typically setpoints provided by a high-level control, which depend on the nominal voltage of the network and the expected loading setpoints provided by a high-level control, which depend on the nominal voltage of the network and the expected loading conditions, see Remark 3.1.

Remark 5.10. To see that (32) is indeed an equivalent representation of (21)–(22), note that the part of the dynamics of $\dot{\omega}_i$ in (22) resulting from $\mathcal{J} VH$ is

$$
\frac{k_{0i}}{\tau_{pi}} \sum_{i=1}^{\hat{n}} \left(\frac{\partial H}{\partial \theta} \right)^T_i
= \frac{k_{0i}}{\tau_{pi}} \sum_{i=1}^{\hat{n}} \left(\sum_{k \sim n_i} V_i V_k |B_{ik}| \sin(\theta_{ik}) - \frac{c_{1i}}{k_{0i}} \right)
= \frac{k_{0i}}{\tau_{pi}} \sum_{k \sim n_i} V_i V_k |B_{ik}| \sin(\theta_{ik}) - \sum_{i=1}^{\hat{n}} \frac{c_{1i}}{k_{0i}}.
$$

since $\sum_{i=1}^{\hat{n}} \sum_{k \sim n_i} V_i V_k |B_{ik}| \sin(\theta_{ik}) = 0$. Furthermore, it follows from (18) that

$$
c_{1i} = \omega^d - \omega^i + k_{0i} P^d_{pi} = - \sum_{i=1}^{\hat{n}} \frac{k_{0i}}{k_{0i}} c_{1i}.
$$

Finally, the remaining term in $\dot{\omega}_i$ is contributed by the dissipation part $\mathcal{J} VH$.

Remark 5.11. The analysis reveals that the stability properties of the lossless microgrid (9), (1) are independent of the frequency droop gains k_{0i}, the active power setpoints P^d_{pi} and the low pass filter time constants τ_{pi}, and only condition (31) is imposed on V^d_1, k_{0i}, and Q^d_1. In that regard, the result is identical to those derived for lossless first-order inverter models in Simpson-Porco et al. (2013a) and lossess second-order inverter models in Schiffer et al. (2013), both assuming constant voltage amplitudes.

5.4. A relaxed stability condition

Condition (31) is imposed to ensure that $H(x)$ given in (33) is a positive definite function and, therefore, qualifies as a Lyapunov function candidate. This condition can be removed if, instead of Lyapunov theory, LaSalle’s invariance principle (which does not require positive definiteness) is invoked (Khalil, 2002). Indeed, from the proof of Proposition 5.9 we have that the function $H(x)$ is still non-increasing and via LaSalle we can conclude that all bounded trajectories converge to an equilibrium.

The qualifier “bounded” is, of course, critical, and its establishment is stymied by the presence of the linear term in θ contained in $H(x)$ given in (33). The inclusion of this term destroys the natural topology of the system, e.g., with $\theta \in S^{n-1}$, and we have to look at the system with θ evolving in \mathbb{R}^{n-1}—which is not a bounded set. See Remark 7 of Dib, Ortega, Barabanov, and Lamnabhi-Lagarrigue (2009) for further discussion on this point that, unfortunately, is often overlooked in the literature.

Fortunately, due to the structure of the system, there is a particular choice of the controller gains that allows us to remove this disturbing term, still preserving a port-Hamiltonian structure. As indicated in Remark 6.5, it turns out that this choice of gains is of interest because it guarantees the desired steady-state active power sharing.

The discussion above is formalized in the following corollary of Proposition 5.9.

Corollary 5.12. Consider the system (9), (1) with Assumption 5.1. Fix τ_{pi}, k_{0i}, and Q^d_{pi}, $i \sim \hat{n}$. Select

$$
k_{0i} P^d_{pi} = \xi, \quad i \sim \hat{n} \text{ and some real constant } \xi.
$$

Then all trajectories of the system (21)–(22) converge to an equilibrium.

Proof. Under condition (38), it follows from Remark 5.5 that

$$
\omega^i = \omega^d + \frac{1}{\sum_{i=1}^{\hat{n}} k_{0i}} \sum_{i=1}^{\hat{n}} P_{pi} = \omega^d + \frac{\xi}{\sum_{i=1}^{\hat{n}} k_{0i}} = \omega^d + \xi
$$

and hence from (20) that $c_{1i} = 0$ for all $i \in \hat{n}$. Consequently, it is possible to define the state $\zeta := \text{col}(\theta, \omega, V)$ in the set $\Gamma^* : S^{n-1} \times \mathbb{R}^n \times \mathbb{R}^n_0$ and represent the system (21)–(22) in port-Hamiltonian form as

$$
\dot{\zeta} = (J - R(\zeta)) \nabla \mathcal{H},
$$

with Hamiltonian $\mathcal{H} : \Gamma^* \rightarrow \mathbb{R}$ defined in (34). Similarly to (35) we have that

$$
\dot{\mathcal{H}} = -(\nabla \mathcal{H})^T R \nabla \mathcal{H} \leq 0
$$

and in analogy to (37) it holds that the invariant set where $H (z(t)) \equiv 0$ is an equilibrium set. Moreover, it follows from Proposition 4.2 that the state $z = \text{col}(\theta, \omega, V) \in \Gamma$ is globally bounded. Hence, by LaSalle’s invariance principle (Khalil, 2002) all trajectories of the system (21)–(22) converge to an equilibrium.
6. Active power sharing

In Simpson-Porco et al. (2013a) a criterion on the frequency droop gains and setpoints has been derived such that the generation units share the active power according to their power ratings. This is a desired control goal in many applications. However, it has been argued in Diaz et al. (2010) that system operators may not always seek to achieve a power sharing in proportion to the power ratings of the units. Instead they may also wish to take into account other technical, economic or environmental criteria, such as fuel consumption, generation costs or emission costs, see also Hernandez-Aramburu, Green, and Mugniot (2005).

In this regard, the ideas derived in Simpson-Porco et al. (2013a) are easily applied to proportional active power sharing with respect to a user-defined criterion—also under the presence of conductances in the network. It turns out that the same criterion ensures that storage devices in charging mode, i.e., $P_i^d < 0$ for some $i \in \bar{n}$, are charged proportionally. To formulate the selection criterion for the controller gains and setpoints, we employ the following definition.

Definition 6.1. Let $\chi_i \in \mathbb{R}_{>0}$ denote weighting factors and P_i^s the steady-state active power flow, $i \sim \bar{n}$. Then two inverters at nodes i and k are said to share their active powers proportionally if

$$
\frac{P_i^s}{\chi_i} = \frac{P_k^s}{\chi_k}.
$$

(40)

A possible choice for χ_i would be, for example, $\chi_i = S_i^N$, $i \sim \bar{n}$. However, the weighting factors χ_i, $i \sim \bar{n}$, do not have to be equal for all inverters, i.e., active power could be shared according to economic or environmental criteria by some inverters, while it could be shared according to the power ratings by other inverters.

Lemma 6.2. Consider the system (9), (1). Assume that it possesses a synchronized motion with synchronization frequency $\omega_s \in \mathbb{R}$. Then all inverters the power outputs of which satisfy $\text{sign}(P_i^s) = \text{sign}(P_k^s)$, achieve proportional active power sharing if the gains k_0 and k_N and the active power setpoints P_i^d and P_k^d are chosen such that

$$
\begin{align*}
 k_0 \chi_i &= k_0 \chi_k \quad \text{and} \quad k_N P_i^d &= k_N P_k^d, \\
 i \sim \bar{n} \text{ and } k \sim \bar{n}.
\end{align*}
$$

(41)

Proof. The claim follows in a straightforward manner from Simpson-Porco et al. (2013a), where it has been shown for first-order inverter models and $\chi_i = S_i^N$, $P_i^d > 0$, $P_i^d > 0$, $i \sim \bar{n}$. Under conditions (41) we have, along the synchronized motion,

$$
\frac{P_i^d}{\chi_i} = -\omega^2 + \omega \omega_d + k_0 P_i^d = -\omega^2 + \omega \omega_d + k_N P_i^d = \frac{P_k^d}{\chi_k} = \frac{P_k^d}{\chi_k},
$$

where $i \in \bar{n}$ and $k \in \bar{n}$ with $\text{sign}(P_i^d) = \text{sign}(P_k^d)$.

Remark 6.3. The conditions in Lemma 6.2 also imply that storage devices in charging mode are charged proportionally.

Remark 6.4. Note that proportional active power sharing is achieved by Lemma 6.2 independently of the admittance values of the network. However, in a highly ohmic network, the droop control laws (4) may induce high fluctuating currents due to the stronger coupling of phase angles and reactive power, see (1). Then, additional methods such as the virtual output impedance (Guerrero et al. 2005) or alternative droop control laws (Zhong, 2013) could be employed instead of (4).

Remark 6.5. Condition (38) in Corollary 5.12 is satisfied if all gains k_0 and all setpoints P_i^d, $i \sim \bar{n}$, are selected according to Lemma 6.2.

Remark 6.6. As described in Section 3, the voltage droop control law (4) follows a similar heuristic approach as the frequency control droop law, aiming at obtaining a desired reactive power distribution in a synchronized state. However, the conditions for proportional active power sharing in Lemma 6.2 are derived using the fact that the frequency of a synchronized motion is equal all over the network, i.e., $\omega_i^s = \omega_k^s = \cdots = \omega^s$, and serves thus as a common communication signal. This is not the case for the voltage, since, in general, $V_i^s \neq V_k^s$ for $i \in \bar{n}$, $k \in \bar{n}$. In the special case of equal voltage amplitudes, i.e., $V_i^s = V_k^s$, $i \in \bar{n}$, $k \in \bar{n}$, proportional reactive power sharing can be achieved by selecting $V_i^d = V_k^d$ as well as voltage droop gains k_0 and k_N, and setpoints Q_i^d and Q_k^d following Lemma 6.2. The fact that the voltage droop control (4) does, in general, not achieve proportional reactive power sharing has been widely recognized in the literature and several alternative or modified decentralized droop control structures have been proposed, e.g., in Li and Kao (2009) and Yao, Chen, Matas, Guerrero, and Qian (2011), with the purpose of improving the reactive power sharing. Nevertheless, proportional reactive power sharing is still a challenging open question.

7. Simulation example

The theoretical analysis is illustrated via simulation examples based on the three-phase islanded Subnetwork 1 of the CIGRE benchmark medium voltage distribution network (Rudion et al., 2006). The network is a meshed network and consists of 11 main buses, see Fig. 1.

The following two modifications are made compared to the original system given in Rudion et al. (2006): first, at bus 9b the combined heat and power (CHP) diesel generator is replaced by an inverter-interfaced CHP fuel cell (FC). Second, since the original network given in Rudion et al. (2006) stems from a distribution network connected to a transmission system, the power ratings of the generation units are scaled by a factor of 4 compared to Rudion et al. (2006), such that the controllable units (CHPs, batteries, FC) can satisfy the load demand in autonomous operation mode at least during some period of time.

The network in Fig. 1 possesses a total of six controllable generation sources of which two are batteries at buses 5b ($i = 1$) and 10b ($i = 5$), two are FCs in households at buses 5c ($i = 2$) and 10c ($i = 6$) and two are FCCHPs at buses 9b ($i = 3$) and 9c ($i = 4$). We assume that all controllable generation units are equipped with frequency and voltage droop control as given in (4). We associate to each inverter its power rating S_i^h, $i \in \bar{n}$. Since the apparent power ratings of the generation sources are not specified in Rudion et al. (2006), we set S_i^h to the maximum active power given for each source in Table 2 of Rudion et al. (2006). The transformer impedances of the inverter-interfaced units are modeled based on the IEEE standard 399–1997 (IEEE, 1998). For simplicity, we assume that the transformer power rating is equivalent to the power rating of the corresponding inverter S_i^h, $i \in \bar{n}$.

Non-controllable PV units are connected at buses 3, 4, 6 and 11. The loads at nodes 3–11 represent industrial and household loads as specified in Table 1 of Rudion et al. (2006), besides the load at node 1, which is neglected. The line parameters and lengths are as given in Table 3 of Rudion et al. (2006). The total length of the lines is approximately 15 km. All simulations are carried out in Plecs (Plexim GmbH, 2013).

Compared to the model given by (1) and (9) used for the analysis, the inducances are represented by first-order ODEs in the model used for the simulations rather than constants as in (1). Hence, the simulations also serve to evaluate the validity of the model (9), (1), as well as the robustness of the stability condition (31) with respect to model uncertainties.
We consider the following two scenarios.

(1) Lossless scenario. All loads and uncontrollable generation sources (PV, wind turbine) of the test system given in Fig. 1 are neglected. As outlined in Section 5, we merge the transformer and filter impedances of the inverters with the line impedances. The largest R/X ratio of an admittance in the network is then 0.30. For HV transmission lines it is typically 0.31 (Engler, 2005). Hence, the assumption of dominantly inductive admittances is satisfied. Consequently, the droop control laws given in (4) are adequate and our stability analysis of Section 5 applies.

The batteries at nodes 5b and 10b are operated in charging mode, hence functioning as loads. We design the frequency droop gains and setpoints of the inverters according to Lemma 6.2 with

\[\alpha_i = 0.3 \] for inverters in generation mode \((i = 2, 3, 4, 6)\) and \(\alpha_i = -0.4\) for inverters in charging mode, i.e., \(i = 1, 5\).

The reactive power setpoints are set to \(Q_i^d = \beta_i S_i^N\) pu with \(\beta_i = 0.025\) for all \(i \in \bar{n}\) to account for the inductive behavior of the lines. The voltage droop gains are chosen in the same relation as the frequency droop gains, i.e., \(k_{p0} = 0.1/S_i^N\) pu/pu and \(V_i^d = 1\) pu for all \(i \in \bar{n}\). The low pass filter time constants are set to \(\tau_{f0} = 0.5\) s, \(i \sim \bar{n}\). The main system data and control gains are given in Table 1.

The simulation results are shown in Fig. 2. After a transient the frequencies synchronize and the voltage amplitudes become constant. The latter satisfy the usual requirement of \(0.9 < V_i^d < 1.1\) for \(V_i^d\) in pu and \(\tau_{f0} \sim \bar{n}\). The initial conditions have been chosen arbitrarily. Condition (31) is satisfied and hence the synchronized motion is locally asymptotically stable.

Furthermore, the batteries are charged in proportion to their power ratings with the active power also being supplied proportionally, as stated in Lemma 6.2. Hence, the simulation confirms that the frequency droop control, as given in (4), is suited to achieve the desired objective of active power sharing. But, as discussed in Section 6, the reactive power is not shared proportionally, limiting the overall performance of the voltage droop control law (4).

Our experience in numerous simulations with large variety of control gains, setpoints, low pass filter time constants and initial conditions is that whenever the solutions of the system converge to a synchronized motion as defined in Assumption 5.4, the latter is locally asymptotically stable by condition (31). However, there exist gain settings such that the solutions of the system exhibit limit-cycle behavior. As one would expect, this is the case for very large control gains and low pass filter time constants.

(2) Scenario with constant impedance loads. In this simulation scenario the robustness of the stability condition (31) with respect to loads represented by constant impedances is evaluated.

It is therefore assumed that all PV units work at 50% of their nominal power with \(\cos(\phi) = P/S = 0.98\) and are treated as negative loads, while the wind turbine is not generating any power.

The corresponding admittance representing a load at a node is computed at nominal frequency and voltage and by adding the load demand and the non-controllable generation at each node. Then, in the corresponding Kron-reduced network all nodes represent controllable DGs.

At first, the admittance matrix of the equivalent Kron-reduced network is computed. As in the lossless scenario, the largest R/X ratio is 0.30. Thus, the assumption of dominantly inductive admittances is also satisfied in the presence of impedances representing loads. The control gains are chosen as specified in the lossless scenario with \(\alpha_i = 0.6\) and \(\beta_i = 0.25\), \(i = 1, \ldots, 6\). Hence, all inverters operate in generation mode. The voltage setpoints and low pass filter time constants are as in the lossless case. We again assume the power setpoints have been provided by some sort of high-level control or energy management system. The main data are given in Table 2.

The simulation results are displayed in Fig. 3. All trajectories converge to a synchronized motion satisfying condition (31), indicating that the condition is robust – to a certain extent – to the presence of transfer and load conductances. The inverters share the active power demand of the loads as stated in Lemma 6.2. Compared to the lossless scenario, all inverters provide positive reactive power. However, as in the lossless scenario, the reactive

Table 1

| Test system parameters for the lossless scenario, \(i = 1, \ldots, 6\) |
|-----------------|------------------|------------------|
| Base values | \(S_{\text{base}} = 4.75\) MVA, \(V_{\text{base}} = 20\) kV |
| \(S_i^N\) | \([0.505, 0.028, 0.261, 0.179, 0.168, 0.012]\) pu |
| \(P_i^d\) | \([-0.202, 0.008, 0.078, 0.054, -0.067, 0.004]\) pu |
| \(k_{p0}\) | \([0.396, 7.143, 0.766, 1.117, 1.191, 16.667]\) Hz/pu |
| \(Q_i^d\) | \([0.013, 0.001, 0.007, 0.005, 0.004, 0.000]\) pu |
| \(k_{q0}\) | \([0.198, 3.571, 0.383, 0.559, 0.595, 8.333]\) pu |

Fig. 1. 20 kV MV benchmark model adapted from Rudion et al. (2006) with 11 main buses and inverter-interfaced units of type: PV—photovoltaic, FC—fuel cell, Bat—battery, FC CHP—combined heat and power fuel cell. PCC denotes the point of common coupling to the main grid. The sign ↓ denotes loads. The numbering of the main buses is according to Rudion et al. (2006).
The initial conditions motion. As in the lossless case, there are gain settings such that the solutions of the system do not converge to a desired synchronized state, i.e., P_i/S_i' for $i = 1, \ldots, 6$, while the batteries are charged in proportion to their ratings, i.e., $P_i/S_i' = P_i/S_i$. The lines correspond to the following sources: battery 5b, $i = 1^{\circ}$, FC 5c, $i = 2^{\circ}$, FC CHP 9b, $i = 3^{\circ}$, FC CHP 9c, $i = 4^{\circ}$, battery 10b, $i = 5^{\circ}$, and FC 10c, $i = 6^{\circ}$. The initial conditions have been chosen arbitrarily. All trajectories converge to a locally asymptotically stable synchronized motion satisfying condition (31). The voltage amplitudes remain within 1 ± 0.1 pu in steady-state.

Table 2

<table>
<thead>
<tr>
<th>Source</th>
<th>Power Output</th>
<th>Base Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PV gen.</td>
<td>0.991</td>
<td>4.75 MVA, $V_{base} = 20$ kV</td>
</tr>
<tr>
<td>Max. sys. load</td>
<td>0.30 pu</td>
<td>0.042, 0.045, 0.017, 0.107, 0.101, 0.1007</td>
</tr>
<tr>
<td>Total PV gen.</td>
<td>0.15 pu</td>
<td>0.261, 0.179, 0.168, 0.012</td>
</tr>
</tbody>
</table>

Fig. 2. Lossless scenario. Trajectories of the power outputs P_i and Q_i in pu, the power outputs relative to source rating P_i/S_i' and Q_i/S_i', the internal relative frequencies $\Delta f_i = (\omega_0 - \omega^*)/(2\pi)$ in Hz and the voltage amplitudes V_i in pu of the controllable sources in the microgrid given in Fig. 1, $i = 1, \ldots, 6$. The active power is shared by the generating sources in proportion to their ratings in steady-state, i.e., $P_i/S_i' = P_i/S_i$ for $i = 2, 3, 4, 6$, while the batteries are charged in proportion to their ratings, i.e., $P_i/S_i' = P_i/S_i$. The lines correspond to the following sources: battery 5b, $i = 1^{\circ}$, FC 5c, $i = 2^{\circ}$, FC CHP 9b, $i = 3^{\circ}$, FC CHP 9c, $i = 4^{\circ}$, battery 10b, $i = 5^{\circ}$, and FC 10c, $i = 6^{\circ}$. The initial conditions have been chosen arbitrarily. All trajectories converge to a locally asymptotically stable synchronized motion satisfying condition (31). The voltage amplitudes remain within 1 ± 0.1 pu in steady-state.

Fig. 3. Scenario with constant impedance loads. Trajectories of the power outputs P_i and Q_i in pu, the power outputs relative to source rating P_i/S_i' and Q_i/S_i', the internal relative frequencies $\Delta f_i = (\omega_0 - \omega^*)/(2\pi)$ in Hz and the voltage amplitudes V_i in pu of the controllable sources in the microgrid given in Fig. 1, $i = 1, \ldots, 6$. The active power is shared by the sources in proportion to their ratings in steady-state, i.e., $P_i/S_i' = P_i/S_i$ for $i = 1, \ldots, 6$. The lines correspond to the following sources: battery 5b, $i = 1^{\circ}$, FC 5c, $i = 2^{\circ}$, FC CHP 9b, $i = 3^{\circ}$, FC CHP 9c, $i = 4^{\circ}$, battery 10b, $i = 5^{\circ}$, and FC 10c, $i = 6^{\circ}$. The initial conditions have been chosen arbitrarily. All trajectories converge to a synchronized motion satisfying condition (31) indicating that the condition is robust – to a certain extent – to the presence of transfer and load conductances.

8. Conclusions and future work

We have considered the problems of frequency stability, voltage stability and power sharing in droop-controlled inverter-based microgrids. First, we have shown that the trajectories of the system are globally bounded for all practical choices of controller gains and setpoints. We then have derived a sufficient condition for local stability for a lossless microgrid using a port-Hamiltonian representation of the latter. The condition states that local stability is independent of the choice of the controller gains and setpoints of the frequency droop controller as well as of the low pass filter time constants, but does depend on the choice of the controller gains and setpoints of the voltage droop controller.

The asymptotic stability property is established constructing a bona fide Lyapunov function—alas, a non-strict one. However, power sharing is not proportional among all units since in steady-state the voltage amplitudes are not equal at all buses.

Furthermore, numerous simulations with different parameters indicate that the stability condition (31) is satisfied in all cases in which the solutions of the system converge to a synchronized motion. As in the lossless case, there are gain settings such that the solutions of the system do not converge to a desired synchronized motion as defined in Assumption 5.4, but show a limit cycle behavior. This is typically the case for very large control gains and/or large low pass filter time constants.
converse Lyapunov theorems ensure the existence of a strict Lyapunov function, from which some robustness properties can be inferred. A case of particular interest, which is currently under investigation, is robustness in the presence of conductances. Two additional contributions of the paper are a selection of controller gains that relaxes some condition of the local stability result and, at the same time, ensures that the desired active power distribution is achieved in steady-state.

The theoretical analysis has been illustrated via simulation examples based on the CIGRE benchmark MV distribution network. The derived stability condition is satisfied and a desired steady-state active power distribution is achieved in simulation for a wide selection of different control gains, setpoints, low pass filter time constants and initial conditions.

The simulations also show that, despite the observation that meshed microgrids with droop control possess a locally stable synchronized motion for a wide range of control gains, the conventional voltage droop control does, in general, not guarantee proportional reactive power sharing. Therefore, future work concerns – possibly distributed – control solutions for accurate reactive power sharing, while guaranteeing network stability. Another interesting, and challenging, open problem is power sharing and stability in dominantly resistive microgrids.

Acknowledgment

The authors would like to thank F. Dörfler for many helpful comments on the topics of this paper.

References

Romeo Ortega was born in Mexico. He obtained his B.Sc. in Electrical and Mechanical Engineering from the National University of Mexico, Master of Engineering from Polytechnical Institute of Leningrad, USSR, and the Docteur D’Etat from the Polytechnical Institute of Grenoble, France in 1974, 1978 and 1984 respectively.

He then joined the National University of Mexico, where he worked until 1989. He was a Visiting Professor at the University of Illinois during 1987–1988 and at the McGill University during 1991–1992, and a Fellow of the Japan Society for Promotion of Science during 1990–1991. He has been a member of the French National Researcher Council (CNRS) since June 1992. Currently he is in the Laboratoire de Signaux et Systemes (SUPELEC) in Paris. His research interests are in the fields of nonlinear and adaptive control, with special emphasis on applications.

He has published three books and more than 250 scientific papers in international journals, with an h-index of 61. He has supervised more than 30 Ph.D. theses. He is a Fellow Member of the IEEE since 1999. He has served as chairman in several IFAC and IEEE committees and participated in various editorial boards of international journals.

Alessandro Astolfi was born in Rome, Italy, in 1967. He graduated in Electrical Engineering from the University of Rome in 1991. In 1992 he joined ETH-Zurich where he obtained an M.Sc. in Information Theory in 1995 and the Ph.D. degree with Medal of Honor in 1995 with a thesis on discontinuous stabilization of nonholonomic systems. In 1996 he was awarded a Ph.D. from the University of Rome “La Sapienza” for his work on nonlinear robust control. Since 1996 he has been with the Electrical and Electronic Engineering Department of Imperial College London, London (UK), where he is currently Professor in Nonlinear Control Theory and Head of the Control and Power Group. From 1998 to 2003 he was also an Associate Professor at the Dept. of Electronics and Information of the Politecnico of Milano. Since 2003 he has also been a Professor at Dipartimento di Ingegneria Civile e Ingegneria Informatica, University of Rome Tor Vergata. He has been a Visiting Lecturer in “Nonlinear Control” in several universities, including ETH-Zurich (1995–1996); Tezra University of Rome (1996); Rice University, Houston (1999); Kepler University, Linz (2000); SUPELEC, Paris (2001).

His research interests are focused on mathematical control theory and control applications, with special emphasis on the problems of discontinuous stabilization, robust stabilization, robust control and adaptive control. He is the author of more than 120 journal papers, of 30 book chapters and of over 240 papers in refereed conference proceedings. He is the recipient of the IEEE CSS A. Ruberti Young Researcher Prize (2007) and of the IEEE CSS George S. Axelby Outstanding Paper Award (2012). He is the author (with D. Karagiannis and R. Ortega) of the monograph “Nonlinear and Adaptive Control with Applications” (Springer-Verlag).

He is Associate Editor of Automatica, the International Journal of Control, the Journal of the Franklin Institute, and the International Journal of Adaptive Control and Signal Processing. He is a Senior Editor of the IEEE Trans. on Automatic Control and Editor-in-Chief of the European Journal of Control. He has also served in the IPC of various international conferences. He is currently the Chair of the IEEE CSS Conference Editorial Board.

Jörg Raisch holds the chair of Control Systems in the Department of Electrical Engineering and Computer Science at Technische Universitat (TU) Berlin. He is also an External Scientific Member of the Max Planck Institute for Dynamics of Complex Technical Systems, where he heads the Systems and Control Theory Group. His main research interests are hybrid and hierarchical control, and control of timed discrete event systems in tropical algebras, with applications in chemical, medical and power systems engineering.

Tevfik Sezi obtained his PhD degree in 1985 from Technische Universitat (TU) Berlin, Germany. Since then, he has been with Siemens AG. Currently, he holds the position of Principal Key Expert f黵 Smart Grids at Siemens AG, Smart Grid Division, Nuremberg, Germany. He holds over 24 patents and 17 invention reports.