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A muscle model for hybrid muscle activation
Abstract: To develop model-based control strategies for
Functional Electrical Stimulation (FES) in order to support
weak voluntary muscle contractions, a hybrid model for
describing jointmotions induced by concurrent voluntary-
and FES inducedmuscle activation is proposed. It is based
on a Hammerstein model – as commonly used in feed-
back controlled FES – and exemplarily applied to describe
the shoulder abduction joint angle. Main component of a
Hammerstein muscle model is usually a static input non-
linearity depending on the stimulation intensity. To addi-
tionally incorporate voluntary contributions, we extended
the static non-linearity by a second input describing the
intensity of the voluntary contribution that is estimated
by electromyography (EMG) measurements – even during
active FES. An Arti�cial Neural Network (ANN) is used to
describe the static input non-linearity. The output of the
ANN drives a second-order linear dynamical system that
describes the combined muscle activation and joint angle
dynamics. The tunable parameters are adapted to the in-
dividual subject by a system identi�cation approach us-
ing previously recorded I/O-data. Themodel has been val-
idated in two healthy subjects yielding RMS values for the
joint angle error of �.��� and �.���, respectively.
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� Introduction

For the rehabilitation of stroke patients it has been found
out that a synchronous muscle activation by FES in ad-
dition to the voluntary contribution improves motor re-
learning [7]. It is expected that closed-loop concepts for
adjusting the intensity of FES can signi�cantly improve
the rehabilitation outcome. However, up to now, most ap-
proaches for feedback controlled FES do not incorporate
the residual voluntary contribution of the patient. In prin-
ciple, the estimation of the voluntary activity, even in FES-
activated muscles, is possible by means of EMG measure-
ments processed byDigital Signal Processing (DSP) [1]. De-
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spite DSP, the noise level of the estimated volitional mus-
cle activity during active FES is usually higher than during
normal EMG recording without FES due to incomplete re-
moval of present stimulation artifacts and the occurring
M-Waves (muscle activity caused by FES). Using noisy sig-
nals for feedback control usually limit the achievable con-
trol performance.

Only few approaches for controlling the stimulation
intensity based on the voluntary activity exist; among
them are strategies in which the behavior of the stimula-
tion intensity is triggered by crossing pre-de�ned thresh-
olds for the voluntary activity [1]. The most advanced ap-
proach so far is to set the stimulation intensity proportion-
ally to the online estimated voluntary e�ort of the patient
in order to amplifyweak residualmovements [6]. However,
this approach is prone to oscillations (instability) caused
by the closed-loop since a low-pass �lter must be applied
to the noisy voluntary activity.

To improve the estimation of the voluntary activity
during FES, we propose the following approach: A model
that maps the stimulation intensity and the voluntary ac-
tivity (hybrid muscle activation) to the occurring joint an-
gle is adapted to the individual person. In a next step, this
model can then be used to estimate the voluntary activ-
ity by an input observer (an inverse calculation of the vol-
untary input), whereby measurements of the joint motion
and the known stimulation intensity are used.

Previous investigations in modeling muscle behavior
based on EMG measurements typically predict the mus-
cle force – commonly only under isometric conditions.
A recent example is given in [3], wherein a NARX recur-
rent neural network model is trained to predict the mus-
cle torque under isometric conditions, however, without
considering the voluntary contribution. In [4], a model for
describing voluntary muscle activations even without the
constraint of isometric conditions is proposed. However,
no FES has been applied herein.

� Experimental set-up

To demonstrate the feasibility of the proposed hybrid
model, it is exemplarily applied to the shoulder abduction
movement against gravity, as shown in Fig. 1 following
local ethical guidelines. Biphasic pulses with 27 Hz were
applied the medial deltoid muscle through surface self-
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Figure 1: Experimental Set-up.

adhesive electrodes (ValuTrode® CF4090 (4x9 cm), Axel-
gaardManufacturing Ltd.) using a current-controlled stim-
ulator (Rehastim™, Hasomed GmbH). Using an inertial
sensor (MTx, Xsens Technologies B.V.) the shoulder abduc-
tion angle was measured. Further, EMG signals were ob-
tained from separate electrodes using the EMG ampli�er
(Porti 32™, TMS International).

The raw EMG-measurements in-between two stimula-
tion pulses are �ltered using the approach described in [2]
yielding a normalized estimate γ* (range [0,1]) for the in-
tensity of the voluntary contribution. For later use in the
model, this noisy volitional muscle activity is low-pass �l-
tered by means of a non-causal fourth-order Butterworth
�lter with zero phase shift and a cut-o� frequency of ��Hz
yielding the volitional activity level γ (range [0,1]). The
stimulation intensity v is applied in terms of a normalized
charge yielding current amplitude and pulsewith of the
applied bi-phasic stimulation pulses as described in [2].

The real-time implementation is based on a com-
puter system running Linux. Development and evalua-
tion was performed in Scilab 5.5.1 (http://www.scilab.org)
using the real-time framework OpenRTDynamics
(http://openrtdynamics.sf.net/).

� Methods

In feedback controlled FES, often Hammerstein muscle
models are employed that mainly consist of a non-linear
static input function followed by linear transfer func-
tion. The input function, also called recruitment function,
yields the muscle recruitment (amount of active motor
units) depending on the normalized stimulation intensity
v (range [0,1]). The dynamic model part (the transfer func-
tion) describes the muscle activation dynamics and the
jointmotion driven by themuscle recruitment. To consider
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Figure 2: The used model consists of a static input function (arti!-
cial neural network), that describe the motor unit recruitment, and
linear transfer function model (AutoRegressive model with eXoge-
nous input (ARX)), that captures the muscle activation dynamics and
the joint motion.

hybridmuscle activations, we extend the static input func-
tion by adding a second input – the voluntary activity esti-
mate γ. As shown in Fig. 2, this extended recruitment func-
tion is described by an Arti�cial Neural Network (ANN)
that uses Local Linear Models (LLM) weighted by Radial
Basis (RB) functions (c.f. Fig. 3). Four normalized radial
basis functions

Φi(v, γ) =
µi(v, γ)

�P
n=�

µn(v, γ)
, i = {�, �, �, �} (1)

based on standard radial basis functions

µi(v, γ) = exp
✓

!
�
�

✓
(v ! ci,v)�

σ�i,v
+
(γ ! ci,γ)�

σ�i,γ
�◆

(2)

are used. The normalized RB functions are combined with
four local linear models to yield the neurons whose out-
puts are superposed yielding the output of the ANN:

ŷ =
�X

i=�
(wi,� + wi,vv + wi,γγ| {z }

ŷi

) áΦi(v, γ). (3)

v, !

RB1

�1

LLM 1

ŷ1
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ŷ4

.

.

.

ŷ

Figure 3: The used structure for the arti!cial neural network using
four neurons.
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Table 1: Parameters of the ANN.

i (neuron) ci ,v ci ,! " i ,! = " i ,v

! ".#$ ".#$ ".#!%&
# ".#$ ".&$ ".#!%&
' ".&$ ".#$ ".#!%&
( ".&$ ".&$ ".#!%&

The parameters of the radial basis functions are chosen
with respect to [5] and summarized in Tab. 1.

To describe the combined muscle activation dynam-
ics and jointmotion, anAutoRegressivemodelwith eXoge-
nous input (ARX)) [5] (a linear dynamic transfer function
model) is used:

ϑ̂[k] = q! m

� + a�q! � + a�q! � ŷ[k], (4)

where ϑ̂[k] is the joint angle at sampling instant k and q! �

is the one-step backwards shift operator (q! �s(k) = s(k !
�)). The time delay ofm = � sampling instantsmatches the
typically observed delay in recorded I/O-data. The tunable
parameters are combined in the parameter vector

Θ = [w�,�, w�,v , w�,γ , á á á, w�,�, w�,v , w�,γ , a�, a�]. (5)

In order to adapt them to an individual subject and mus-
cle condition, I/O data are recorded during an identi�ca-
tion experiment and a successive linear least squares opti-
mization is performed yielding the optimal parameter set
Θ* that minimizes the cost function

J(Θ) =
NX

k=�
(ϑ̂[k](Θ, γ[k], v[k]) ! ϑ[k])�, (6)

where ϑ[k] is the recorded joint angle.
To obtain I/O data, an experimental procedure is pro-

posed in which the stimulation intensity is increased step-
wise (�ve levels, linear increase of the intensity) to the
upper well tolerated intensity. During the time periods in
which the stimulation intensity remains constant (lasting
always � s), the subject is instructed to voluntarily elevate
his arm to a given joint angle of approximately ��� for � s.

� Results

The proposed experimental procedure has been per-
formed twice for twohealthy subjects yielding one training
and one validation data-set for each subject.

The model parameters were identi�ed and the out-
put ϑ of the obtained model was then simulated (not pre-
dicted) for the inputs of the training dataset and compared

Figure 4: Result of the model validation for subject A.

Figure 5: Result of the model validation for subject B.

to themeasured output to asses themodel �t. The result in
terms of the Root Mean Square Error (RMS) is �.�� for sub-
ject A and �.��� for subject B.

To validate the model, the inputs of the validation
dataset are used to simulate the output of the obtained
model. The input signals aswell as the simulated andmea-
sured output angle are shown in Fig. 4 and Fig. 5 for both
subjects. In this validation, RMS errors of �.��� and �.���

for subject A and subject B have been obtained, respec-
tively.

� Conclusion

For the prediction and simulation of joint angle move-
ments, an ANN-based dynamical model has been devel-
oped and tested in two healthy subjects. The obtained
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small RMS errors – both for model �t and validation –
show the feasibility of the proposed joint angle prediction
in the considered joint angle range of about 50 degree.
The required time duration of approximately half aminute
for the identi�cation procedure is feasible to the time con-
straints in clinical environments. The observed model ac-
curacy is high despite using a Hammerstein model struc-
ture that is usually applied to describe isometric muscle
contractions only. A Hill-type muscle model structure can
be considered as extension to this approach in case that
the accuracy of the proposed model decreases for larger
joint angle ranges.

Potential applications include the adaption of FES-
support in trial to trial based training procedures. The pri-
mary target applicationwill be the estimation of the volun-
tary activity. Therefor, we propose an input observer using
the previously identi�ed model that inversely calculates
the input γ by using the known stimulation intensity v and
the joint angle ϑ that can both bemeasuredwith low noise
amplitude e.g. by means of inertial motion units (IMUs).
The obtained model accuracy should be su�cient for the
given applications.

Concerning the long-term accuracy, however, we ex-
pect di�culties caused by time-variances in the muscle’s
behavior. Herein, important factors are the rapidly pro-
gressingmuscle fatigueunder FESand in case of strokepa-
tients, a potential time-variant spasticity. To tackle these
issues,wepropose aperiodic re-calibrationof themodel in
trial to trial based training procedures. Therefor, we expect
that I/O data obtained during FES-supported training for
motor re-learning are also feasible to allow the parameter
estimation. Another approach, worth to be investigated,
would be a parameter estimation using Recursive Least
Squares (RLS) during training. Both approacheswould not
require interventions or additional e�ort to be performed
during training sessions.

Futurework also considersmultiplemuscles acting on
one joint and, �nally, investigations in stroke and incom-
plete spinal cord injured patients are planned.
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