Optimal Control for Timed Event Graphs under Partial Synchronization

Xavier David-Henriet, Laurent Hardouin, Jörg Raisch, and Bertrand Cottenceau

Abstract—Timed event graphs (TEGs) are a subclass of timed Petri nets suitable to model decision-free timed discrete event systems. In classical TEGs, exact synchronization of two transitions T_1 and T_2 is available by requiring that transitions T_1 and T_2 fire simultaneously. In this paper, a new sort of synchronization, namely partial synchronization, is introduced: transition T_2 has to fire when transition T_1 fires, but transition T_1 is not influenced by transition T_2. Under some assumptions, optimal control, already available for classical TEGs, is extended to TEGs under partial synchronization.

I. INTRODUCTION

Event graphs constitute a subclass of Petri nets where each place has exactly one upstream and one downstream transition and all arcs have weight 1. To capture time in event graphs, timed event graphs (TEGs) are built by equipping each place with a holding time (i.e., duration a token must spend in a place before enabling the firing of the next transition). TEGs are decision-free: the interesting question is not which event happens next, but when the next possible events happen. Therefore, TEGs are suitable to model systems ruled by synchronization (e.g., manufacturing processes, transport networks). It is a well-known fact that the timed/event behavior of a TEG, under the earliest functioning rule (i.e., each transition with at least one upstream place fires as soon as it is enabled) can be expressed by linear relations over some dioids [1]. It leads to dynamic system representations and control methods built by analogy with classical control theory. For example, optimal control for TEGs is defined in [2], [3].

![Fig. 1: Different sorts of synchronization for TEGs](image)

For TEGs, synchronization classically refers to a requirement on the availability of resources (Fig. 1a): transition T_3 can fire after transition T_1 and transition T_2 fire. Some work has already been done to develop new types of synchronization and, therefore, to describe new phenomena. For example, in [4], soft synchronization is defined: a synchronization can be broken, but at a certain cost. A special case of synchronization is exact synchronization (Fig. 1b): transition T_1 and transition T_2 have to fire simultaneously. Partial synchronization (Fig. 1c) is a weak form of exact synchronization: transition T_2 can only fire when (not after as in Fig. 1a) transition T_1 fires and partial synchronization implies no condition on the firings of transition T_1.

Partial synchronization leads to a new class of timed discrete event systems: timed event graphs under partial synchronization (TEGPS). From a practical point of view, TEGPS are useful to model systems, divided in two decision-free subsystems: a main subsystem (transition T_1 in Fig. 1c) and a secondary subsystem (transition T_2 in Fig. 1c), such that the secondary subsystem has to adjust its behavior on the main subsystem, but the main subsystem is not affected by the secondary subsystem. For public transport networks, for example, a user (secondary subsystem) waits for its bus (main subsystem), but the bus does not wait for the user: the user has to adapt his behavior to the bus time-schedule.

In this paper, the behavior of the main subsystem is predetermined. Therefore, the main subsystem is represented by isolated transitions with known timed behaviors. Under this condition, the behavior of the decision-free secondary subsystem is investigated. In particular, the concept of optimal control is extended to TEGPS.

Necessary algebraic tools are presented in § III. In § IV, TEG modeling over the dioid \mathbb{Z}_{max} is recalled. In § V, partial synchronization is formally defined. The main contributions of this paper are introduced in § VI, methods to determine the fastest output and the optimal input of the secondary subsystem under a predefined behavior of the main subsystem.

II. ALGEBRAIC TOOLS

The following is a short summary of basic results from dioid theory and residuation theory. The reader is invited to consult [1], [5] for more details.

A. Dioid Theory

A dioid \mathcal{D} is a set endowed with two internal operations \oplus (addition) and \otimes (multiplication, often denoted by juxtaposition), both associative and both having a neutral element denoted ε and e respectively. Moreover, \oplus is commutative and idempotent ($\forall a \in \mathcal{D}, a \oplus a = a$), \otimes is distributive with
The operation \(\oplus \) induces an order relation \(\preceq \) on \(D \), defined by \(\forall a, b \in D, a \preceq b \iff a \oplus b = a \). According to this order relation, \(a \oplus b \) is the least upper bound of \(\{a, b\} \).

A dioid \(D \) is said to be complete if it is closed for infinite sums and if multiplication distributes over infinite sums. A complete dioid admits a greatest element \(\top = \bigoplus_{x \in \mathbb{P}} x \). On a complete dioid, it is possible to define a new internal operation \(\wedge: a \land b \) that is the greatest lower bound of \(\{a, b\} \).

Example 1: Residuation Theory

A well-known complete dioid is the \((\max, +)\)-algebra, denoted \(\mathbb{Z}_{\max} \) (resp. \(\mathbb{R}_{\max} \)): \(\mathbb{Z} = \mathbb{Z} \cup \{-\infty, +\infty\} \) (resp. \(\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\} \)) is endowed with \(\max \) as addition and \(+ \) as multiplication. \(\varepsilon \) is equal to \(-\infty \) and \(\top \) to \(+\infty \). The associated order relation \(\succeq \) is the usual order relation \(\leq \).

By analogy with linear algebra, \(\oplus \) and \(\otimes \) are defined for matrices with entries in a dioid. Let \(A, B \in D^{n \times m} \) and \(C \in D^{m \times p} \):

- \((A \oplus B)_{ij} = A_{ij} \oplus B_{ij} \)
- \((A \otimes C)_{ij} = \bigoplus_{k=1}^{m} A_{ik}C_{kj} \)

Furthermore, endowed with these operations, the set of square matrices with entries in a complete dioid is also a complete dioid.

The following theorem plays a fundamental role for the study of TEG behavior under the earliest functioning rule.

Theorem 1 (Kleene Star Theorem):

The implicit inequality \(x \preceq ax \oplus b \) defined over a complete dioid admits \(x = a^*b \) as least solution with \(a^* = \bigoplus_{i \geq 0} a^i \) (Kleene star). Besides, this solution achieves equality.

B. Residuation Theory

In ordered sets, like dioids, equation \(f(x) = b \) may have neither solution, one solution, or multiple solutions. In order to give always a unique answer to the problem of mapping inversion, residuation theory [6], [7] provides, under some assumptions, the greatest solution (in accordance with the considered order) to the inequality \(f(x) \preceq b \).

Definition 1 (Residuation): Let \(f: \mathcal{E} \rightarrow \mathcal{F} \), with \((\mathcal{E}, \succeq) \) and \((\mathcal{F}, \preceq) \) ordered sets. An isotone (i.e., order-preserving) mapping \(f \) is said to be residuated if and only if \(y \in \mathcal{F} \), the least upper bound of the subset \(\{x \in \mathcal{E} | f(x) \preceq y \} \) exists and lies in this subset. It is denoted \(f^\sharp(y) \), and mapping \(f^\sharp \) is called the residual of \(f \).

The following theorem gives a very handy characterization of residuated mappings when the considered ordered sets are complete dioids.

Theorem 2 ([11]): Let \(f: D_1 \rightarrow D_2 \) be an isotone mapping defined over complete dioids. Mapping \(f \) is residuated if and only if \(f(\varepsilon) = \varepsilon \) and, \(\forall A \subseteq D_1, f(\bigoplus_{x \in A} x) = \bigoplus_{x \in A} f(x) \).

Therefore, over complete dioids, \(L_a: x \mapsto a \otimes x \) (left-product by \(a \)), respectively \(R_a: x \mapsto x \otimes a \) (right-product by \(a \)), is residuated. Its residual is denoted by \(L^\sharp_a(x) = a \sqcup x \) (left-division by \(a \)), resp. \(R^\sharp_a(x) = x \sqcap a \) (right-division by \(a \)). As left- and right-products are extended to matrices with entries in a complete dioid, left- and right-divisions are also extended to matrices with entries in a complete dioid. Besides, the calculation of left- and right-divisions in the matrix case can be derived from the calculation in the scalar case.

Proposition 1 ([11]): Consider a complete dioid \(D \), \(A \in D^{n \times m} \), \(B \in D^{m \times p} \), and \(C \in D^{p \times m} \), then:

- \((B \land C)_{ij} = \bigwedge_{k=1}^{m} B_{ki} \land C_{kj} \)
- \(A \sqcup C \in D^{n \times p} \) with \((A \sqcup C)_{ij} = \bigvee_{k=1}^{n} A_{ik} \lor C_{kj} \)

Residuation theory leads to a dual version of Th. 1.

Theorem 3: The implicit inequality \(x \succeq a \clubsuit x \land b \) defined over a complete dioid admits \(x = a^\ast b \) as greatest solution. Besides, this solution achieves equality.

Definition 2: A closure (resp. dual closure) mapping \(f \) is an isotone projection (i.e., \(f \circ f = f \)) from a dioid \(D \) into itself, greater than (resp. less than) or equal to the identity mapping \(\text{id} \).

The next properties of closure mappings play a particular role in the following.

Lemma 1: Let \(f \) be a closure mapping. The least solution \(x \) of:

\[
\begin{cases}
 x \geq s \\
 x \in \text{Im}(f)
\end{cases}
\]

is \(f(s) \).

Proof: As \(f \geq \text{id} \), \(f(s) \) is a solution. Let \(x \) be a solution. As \(x \in \text{Im}(f) \), \(x = f(s) \geq s \). Besides, as \(f \) is isotone, \(x = f(s) \geq f(s) \).

Proposition 2 ([7],[8]): Let \(f \) be a residuated mapping.

The following statements are equivalent:

- \(f \) is a closure mapping.
- \(f^\sharp \) is a dual closure mapping.
- \(f^\sharp = f \circ f^\sharp \)
- \(f = f \circ f^\sharp \)

Lemma 2: Let \(f \) be a residuated closure mapping. The greatest solution \(x \) of:

\[
\begin{cases}
 x \leq s \\
 x \in \text{Im}(f)
\end{cases}
\]

is \(f^\sharp(s) \).

Proof: \(f^\sharp = f \circ f^\sharp \) implies \(\text{Im}(f^\sharp) \subseteq \text{Im}(f) \), conversely \(f = f \circ f^\sharp \) implies \(\text{Im}(f) \subseteq \text{Im}(f^\sharp) \). Therefore, \(\text{Im}(f) = \text{Im}(f^\sharp) \). The considered problem is equivalent to finding the greatest solution of:

\[
\begin{cases}
 x \preceq s \\
 x \in \text{Im}(\text{g})
\end{cases}
\]

with \(g = f^\sharp \) a dual closure. By duality with Lem. 1, the greatest solution is \(g(s) = f^\sharp(s) \).

III. TEG Description

This section is a short summary of TEG description over the dioid \(\mathbb{Z}_{\max} \). The reader is invited to consult [1], [9] for more details.

For a timed Petri net, a dater \(t_k \) (i.e., a non-decreasing function from \(\mathbb{Z} \) to \(\mathbb{Z}_{\max} \)) is associated to each transition \(T_k \). For \(k \geq 0, t_k(k) \) is the time when firing \(k \) occurs. By
convention, for \(k < 0, t_i (k) = \epsilon \) and for \(k \geq 0, t_i (k) \in \mathbb{N}_0 \cup \{ \epsilon, \top \} \). From now on, only daters associated with transitions are considered: the previous convention always holds. For timed Petri nets, it is possible to partition the set of transitions into:

- input transitions \(U_1, \ldots, U_p \): transitions without upstream places. The associated daters are denoted \(u_1, \ldots, u_p \).
- output transitions \(Y_1, \ldots, Y_q \): transitions without downstream places. The associated daters are denoted \(y_1, \ldots, y_q \).
- state transitions \(X_1, \ldots, X_n \): transitions with downstream and upstream places. The associated daters are denoted \(x_1, \ldots, x_n \).

For TEGs with at most one token in each place, the state daters and output daters are solutions of \((\max, +)\)-inequalities:

\[
\begin{align*}
x (k) & \geq A_0 x (k) + A_1 x (k - 1) + B u (k) \\
y (k) & \geq C x (k)
\end{align*}
\]

with \(A_0, A_1 \) in \(\mathbb{Z}_{\max}^{m \times n} \), \(B \) in \(\mathbb{Z}_{\max}^{m \times p} \) and \(C \) in \(\mathbb{Z}_{\max}^{n \times n} \).

TEGs with places containing more than one token can be transformed into TEGs with at most one token in each place by adding state transitions.

From now on, only the behavior of TEGs (or TEGPS) under the earliest functioning rule (i.e., each transition with at least one upstream place fires as soon as it is enabled) is investigated. In the following, two dual problems for TEGs, namely fastest output and optimal input, are briefly presented.

A. Fastest Output

The first problem is to calculate the fastest (i.e., least) output \((u_y (k))_{0 \leq k \leq N}\) induced by a known input \((u (k))_{0 \leq k \leq N}\). The fastest output corresponds to the output under the earliest functioning rule.

First, the co-state \(\zeta (k)\) is the greatest solution of the implicit backward-recursive inequality:

\[
\zeta (k + 1) \leq A_0 \zeta (k) + A_1 \zeta (k - 1) + C \zeta (k)
\]

with \(\zeta (N + 1) = \top\).

According to Th. [3] an explicit backward-recursive equation for the co-state is available:

\[
\zeta (k) = (A_1 A_0^t) \zeta (k + 1) + (C A_0^t) y (k)
\]

with \(\zeta (N + 1) = \top\).

Second, the optimal input is directly derived from the co-state:

\[
u_y (k) = B \zeta (k)
\]

This can be interpreted as the “just-in-time” input to achieve a desired output.

IV. PARTIAL SYNCHRONIZATION

In this section, the partial synchronization described in § [4] is formally defined.

Definition 3: Given a dater \(d\), the partial synchronization mapping by \(d\), denoted \(\Phi_d\), is a mapping from \(\mathbb{Z}_{\max}\) to \(\mathbb{Z}_{\max}\) defined by:

\[
\Phi_d(x) = \bigwedge_{k' \in \mathbb{Z}} \{d(k')|d(k') \geq x\}
\]

By convention \(\bigwedge_{\emptyset} = \top\), this ensures the existence of \(\Phi_d(x)\) for all daters \(d\) and all \(x \in \mathbb{Z}_{\max}\).

Consider the system pictured in Fig. [1c] dater \(t_1\) (resp. \(t_2\)) represents the behavior of transition \(T_1\) (resp. \(T_2\)) when partial synchronization is neglected. Under partial synchronization, the behavior of transition \(T_1\), the main subsystem, does not change. But the behavior of transition \(T_2\), the secondary subsystem, is affected by the partial synchronization: each firing of transition \(T_2\) is delayed until the next firing of transition \(T_1\). The dater \(t_2^S\), describing the behavior of transition \(T_2\) under partial synchronization, is obtained from daters \(t_1\) and \(t_2\) using the partial synchronization mapping:

\[
t_2^S = \Phi_d (t_2 (k)) = \bigwedge_{k' \in \mathbb{Z}} \{t_1(k') | t_1(k') \geq t_2 (k)\}
\]

An equivalent definition of the partial synchronization mapping based on the image of \(d\) is:

\[
\Phi_d (x) = \bigwedge_{|d(x')|} \{x' \geq x| x' \in \text{Im} (d)\}
\]

A direct extension of the partial synchronization mapping to the vector case is possible: let \(d\) be a vector composed of \(n\) daters, \(\Phi_d\) is a mapping from \(\mathbb{Z}_{\max}^{n}\) to \(\mathbb{Z}_{\max}^{n}\) defined by, for all \(x \in \mathbb{Z}_{\max}\), \(\Phi_d(x)_i = \Phi_d (x_i)\).

The next propositions present some interesting properties of the partial synchronization mapping \(\Phi_d\) in the scalar case. However an extension to vectors is obvious.

Proposition 3: Given a dater \(d\), the partial synchronization mapping by \(d\), \(\Phi_d\), is a closure mapping.

Proof: \(\Phi_d\) is greater than or equal to the identity mapping, as:

\[
\forall x \in \mathbb{Z}_{\max}, \Phi_d (x) = \bigwedge_{k' \in \mathbb{Z}} \{d(k')|d(k') \geq x\} \geq x
\]

\(\Phi_d\) is isotope:

\[
\forall x_1, x_2 \in \mathbb{Z}_{\max}, x_1 \geq x_2 \Rightarrow \Phi_d (x_1) \geq \Phi_d (x_2)
\]
The previous proposition does not hold anymore for \mathbb{R}_{max}. Consider dater and set \mathcal{X} defined as:

$$d(k) = \begin{cases}
\varepsilon & \text{if } k < 1 \\
2 - \frac{1}{n} & \text{otherwise}
\end{cases}$$

Then, $\Phi_d\left(\bigoplus_{x \in \mathcal{X}} x\right) = \Phi_d(2) = \top$, but $\bigoplus_{x \in \mathcal{X}} \Phi_d(x) = 2$. Then, according to Th. 2, Φ_d is not residuated.

Proposition 5: Consider a dater d, the residual of Φ_d is given by:

$$\Phi_d^d(y) = \begin{cases}
\top & \text{if } y = \top \\
\bigoplus_{k \in \mathbb{Z}} \{d(k') | d(k') \leq y\} & \text{otherwise}
\end{cases}$$

Proof: $\Phi_d^d(y)$ is the greatest solution x of $\Phi_d(x) \leq y$ with $y \in \mathbb{R}_{\text{max}}$. If $y = \top$, $\forall x \in \mathbb{R}_{\text{max}}, \Phi_d(x) \leq \top$. In particular, $\Phi_d(\top) \leq \top$, then $\Phi_d^d(\top) = \top$.

If $y \neq \top$, $\Phi_d(x) \leq y$ is equivalent to, according to Th. 4, $\exists x' \in \text{Im}(d), x \preceq x' \preceq y$. Then:

$$\Phi_d^d(y) = \bigoplus \left\{ x \in \mathbb{R}_{\text{max}}, \exists x' \in \text{Im}(d) | x \preceq x' \leq y \right\}$$

\[= \bigoplus \left\{ x' \in \text{Im}(d) | x' \preceq y \right\} \text{ as Im}(d) \subseteq \mathbb{R}_{\text{max}}\]
A. Triangular Representation of a TEG

A particular representation for TEGs is introduced to avoid implicit inequalities for the state in (4) and for the co-state in (5). This problem was already addressed in [1, §2.5.3].

Lemma 4 (11)): A TEG is live (i.e., each circuit has at least one token) if and only if there exists a permutation matrix P for which the matrix $P^T A_0 P$ is strictly lower triangular.

Assuming that the TEG is live, it is not restrictive. Indeed, a TEG can always be represented by a live TEG with equivalent dynamics by:

- deleting the state transitions belonging to a circuit without tokens, but with a strictly positive holding time
- aggregating the state transitions belonging to a circuit without tokens, but with a holding time equal to 0. This case corresponds to the exact synchronization pictured in Fig. 1(b) for a circuit with only two transitions.

Therefore, in the following, it is assumed that A_0 is strictly lower triangular (i.e., $(A_0)_{ij} = \varepsilon$ for $j \geq i$).

B. Fastest Output

In this section, the calculation of the fastest output $(y^S_0(k))_{0 \leq k \leq N}$ induced by a predefined input $(u(k))_{0 \leq k \leq N}$ (formally, the least solution of (4)) is investigated. The state inequality is implicit:

$$x^S_u(k) \geq A_0 x^S_u(k) \oplus A_1 x^S_u(k-1) \oplus Bu(k)$$

However, as ε is absorbing for \oplus, the triangular structure of A_0 leads to a componentwise explicit inequality

$$x^S_u,j(k) \geq \zeta_j(k)$$

for $j \in [1,n]$ with:

$$\zeta_j(k) = \bigoplus_{l=1}^{j-1} (A_0)_{jl} x^S_u(k) \oplus \bigoplus_{l=1}^{n} (A_1)_{jl} x^S_u(k-1) \oplus \bigoplus_{l=1}^{p} B_{jl} u_l(k)$$

Therefore, the problem of determining the least state induced by a predefined input $(u(k))_{0 \leq k \leq N}$ is equivalent to finding the least solution of:

$$P_{jk} : \begin{cases} x^S_{u,j}(k) \geq \zeta_j(k) \\ x^S_{u,j}(k) \in \text{Im} (\Phi_{t_j}) \end{cases}$$

for all $j \in [1,n]$ and $k \in [0, N]$. Due to the structure of $\zeta_j(k)$, it is possible to consider the subproblems P_{jk} successively according to the following forward order: $P_{j1}, \ldots, P_{jn}, P_{n+1}, \ldots$. Besides, as Φ_{t_j} is a closure mapping (see Prop. 4), an expression of the least solution of each subproblem has already been presented in Lem. 1. Consequently, the least state is given by:

$$x^S_{u,j}(k) = \Phi_{t_j}(\zeta_j(k))$$

for $j \in [1,n]$ and $k \in [0, N]$.

As before, the fastest output $(y^S_0(k))_{0 \leq k \leq N}$ induced by a predefined input $(u(k))_{0 \leq k \leq N}$ is directly derived from the least state:

$$\forall k \in [0, N], \quad y^S_0(k) = C x^S_u(k)$$

For fastest output calculation, considering the partial synchronization is equivalent to adding a supplementary condition $x(k) \in \text{Im} (\Phi_{t_j})$ to (4). Therefore, the least solution of (4) is less than or equal to the least solution of (4). Formally, for all k, $y_u(k) \leq y^S_0(k)$: this corresponds to the intuitive fact that partial synchronization slows the system down.

C. Optimal Input

In this section, the calculation of the optimal input $(u^S_0(k))_{0 \leq k \leq N}$ ensuring a predefined deadline $(y(k))_{0 \leq k \leq N}$ (formally, the greatest solution of (5)) is investigated. The co-state inequality is implicit:

$$\zeta^S(k) \leq A_0 \zeta^S(k) \land A_1 \zeta^S(k+1) \land C \zeta y(k)$$

Using Prop. 1 leads to a componentwise inequality for the co-state:

$$\zeta^S_j(k) \leq \bigwedge_{l=1}^{n} (A_0)_{lj} \zeta^S_l(k) \land \bigwedge_{l=1}^{n} (A_1)_{lj} \zeta^S_l(k+1)$$

As ε is absorbing for \otimes, $\varepsilon \otimes \mathbb{T} = \varepsilon$ and, therefore, for all z in \mathbb{Z}_{\max}, $\varepsilon \otimes z (i.e.,$ the greatest solution x of $\varepsilon \otimes x \leq z$) is equal to \mathbb{T}. Consequently, as A_0 is strictly lower triangular:

$$\bigwedge_{l=1}^{n} (A_0)_{lj} \zeta^S_l(k) = \bigwedge_{l=j+1}^{n} (A_0)_{lj} \zeta^S_l(k)$$

Therefore, a componentwise explicit inequality is also obtained for the co-state. For $j \in [1, n]$,

$$\tau^S_j(k) = \bigwedge_{l=j+1}^{n} (A_0)_{lj} \zeta^S_l(k) \land \bigwedge_{l=1}^{n} (A_1)_{lj} \zeta^S_l(k+1) \land \bigwedge_{l=1}^{p} C_{lj} \zeta y_l(k)$$

As before, the problem is divided into smaller subproblems: find the greatest solution $\zeta^S_j(k)$ of:

$$Q_{jk} : \begin{cases} \zeta^S_j(k) \leq \tau^S_j(k) \\ \zeta^S_j(k) \in \text{Im} (\Phi_{t_j}) \end{cases}$$

for all $j \in [1, n]$ and $k \in [0, N]$. Due to the structure of $\tau^S_j(k)$, it is possible to consider the subproblems Q_{jk} successively according to the following backward order: $Q_{nN}, \ldots, Q_{n0}, Q_{nN-1}, \ldots$. Besides, as Φ_{t_j} is a residuated closure mapping (see Prop. 4), an expression of the greatest solution of each subproblem has already been presented in Lem. 2. Consequently, the co-state is given by:

$$\zeta^S_j(k) = \Phi^4_{t_j}(\tau^S_j(k))$$

for $j \in [1, n]$ and $k \in [0, N]$.

The co-state leads directly to the optimal input:

$$\forall k \in [0, N], \quad u^S_0(k) = B \zeta^S(k)$$

As in the TEG case, the state induced by the optimal input is not necessarily equal to the co-state. However, it is always
less than or equal to the co-state. Therefore, it ensures the deadline.

By analogy with fastest output calculation, a relation exists between the optimal output with or without partial synchronization: for all k, $u_y(k) \geq u^S_y(k)$. Therefore, neglecting the partial synchronization for the optimal input calculation may lead to an output exceeding the deadline.

D. Application

The considered simple transport network is composed of two bus routes with transitions (stops) X_1, X_2, X_3 and X_4, X_5, X_6, such that transition X_2 (resp. transition X_5) is subject to partial synchronization with transition T_2 (resp. transition T_5) caused, for example, by a connection with a train line. The system is modelled by the TEG represented in Fig. 2. Dater t_2 (resp. date t_5), representing the train time-schedule at transition T_2 (resp. transition T_5), takes the following values $(t_2(k))_{0 \leq k \leq 5} = \{6, 15, 20, 31, 35, 42\}$ (resp. $(t_5(k))_{0 \leq k \leq 5} = \{4, 11, 20, 26, 32, 42\}$).

![Fig. 2: A simple transport network](image)

The matrices of the state-space model are:

$$A_0 = \begin{pmatrix}
ε & ε & ε & ε & ε & ε \\
5 & ε & ε & ε & ε & ε \\
ε & 7 & ε & ε & ε & ε \\
ε & ε & 4 & ε & ε & ε \\
ε & ε & ε & 9 & ε & ε \\
ε & ε & ε & ε & ε & ε
\end{pmatrix} \quad B = \begin{pmatrix}
ε & ε \\
ε & ε
\end{pmatrix}
$$

$$A_1 = \begin{pmatrix}
ε & ε & ε & ε & ε & ε \\
ε & ε & ε & ε & ε & ε \\
ε & ε & ε & ε & ε & ε \\
ε & ε & ε & ε & ε & ε \\
ε & ε & ε & ε & ε & ε \\
ε & ε & ε & ε & ε & ε
\end{pmatrix} \quad C^T = \begin{pmatrix}
e & ε \\
e & ε
\end{pmatrix}
$$

In this example, the matrix A_0 is already strictly lower triangular. Therefore, no permutation is necessary.

The following input u and deadline y are considered:

$$\begin{align*}
(u(k))_{0 \leq k \leq 2} &= \begin{pmatrix}
0 \\
0 \\
13 \\
14 \\
22 \\
24
\end{pmatrix}, \begin{pmatrix}
25 \\
27 \\
43 \\
50 \\
53
\end{pmatrix} \\
y(k)_{0 \leq k \leq 2} &= \begin{pmatrix}
12 \\
13 \\
10 \\
28 \\
7
\end{pmatrix}, \begin{pmatrix}
27 \\
29 \\
26 \\
37 \\
38
\end{pmatrix}
\end{align*}$$

With partial synchronization, the following results are obtained:

$$\begin{align*}
(y_u^S(k))_{0 \leq k \leq 2} &= \begin{pmatrix}
13 \\
13 \\
10 \\
26 \\
7
\end{pmatrix}, \begin{pmatrix}
27 \\
29 \\
26 \\
37 \\
38
\end{pmatrix} \\
u_y^S(k)_{0 \leq k \leq 2} &= \begin{pmatrix}
10 \\
11 \\
10 \\
11 \\
10
\end{pmatrix}, \begin{pmatrix}
28 \\
25 \\
28 \\
25 \\
28
\end{pmatrix}
\end{align*}$$

As expected, for all k, $y_u^S(k) \geq y_u(k)$ and $u_y^S(k) \leq u_y(k)$.

VI. Conclusion

In this paper, a new sort of synchronization is formally introduced: partial synchronization. Under a predefined behavior of the main subsystem, an explicit expression for the state of the secondary subsystem is obtained. This expression allows us to constructively include partial synchronization in the dynamics of the secondary subsystem. Therefore, under some conditions, optimal control is defined for TEGPS. An interesting issue for future work is to adapt the operatorial representation of [5] to TEGPS.

REFERENCES

