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Abstract: This paper deals with the problem of modelling and control of the knee joint
dynamics. Using controlled functional electrical stimulation (FES) of the quadriceps
muscle group the knee joint will be positioned at a commanded angle, subject to
disturbances and displacements of the hip and ankle joints. A simple ARX-model
has been estimated directly from measured input-output plant data. Further, a
discrete linear pole-placement controller will be presented as solution for the tracking
and regulation problems. Advantages of this approach in comparison with nonlinear
controllers based on physiological models will be discussed and natural limitations
are shown. A simple tuning rule for an already determined controller will be given
to achieve robust stability with respect to the plant characteristics, which depend
on the actual operating point. Experiments with neurologically intact subjects show
encouraging results.
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1. INTRODUCTION

The control of single limb movements of para-
plegics represents an important preliminary stage
towards more complex motor function restoration
of handicapped persons suffering from spinal cord
injury. Of particular interest in this case are tasks
like standing-up, standing and sitting-down. Us-
ing functional electrical stimulation (FES) with
surface electrodes results in muscle contraction
and subsequent joint movement. A feedback con-
trol system will be investigated for knee joint
movement. Here, the quadriceps muscles (rectus
femoris and vasti) are stimulated by one pair of
electrodes. The resulting knee joint angle is mea-
sured. Although this experiment seems simple, it
is a good example in the study of the general char-
acteristics of human kinematics. Because of the
relatively large movement range a non-isometric
muscle contraction arises, so that the moment
generated at the joint depends very strongly on

the muscle length and velocity. Both of these vari-
ables are functions of the set of joint angles and
their derivatives. Movements of the hip joint for
example have an influence on the knee joint due
to the biarticular behaviour of the rectus femoris
muscle group. Additional complicating effects are
the presence of a nonlinear recruitment curve for
the muscle activation as well as some nonlinear
terms in the equations of motion due to gravity
and elastic passive moment. Constraints on the in-
put (stimulation level) and output (limited range
of knee angle) make the controller design more
difficult.

To deal with this problem several authors have
developed neuromusculoskeletal models and them
used for controller design (Palazzo et al., 1998;
Riener and Quintern, 1996; Riener and Fuhr,
1998; Ježernik and Riener, 1999; Chizeck et al.,
1999). These models take into account the major
properties of the muscle and segmental dynamics
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during FES. This approach requires a large effort
to determine the actual values of the model pa-
rameter for each new individual. In (Riener and
Quintern, 1996; Palazzo et al., 1998) a feedfor-
ward controller consisting of an analytic inverse
of the model captures the major nonlinearities
and gives a nominal control action to let the
knee angle follow a commanded trajectory. A sim-
ple feedback controller, e.g. proportional-integral-
derivative (PID), then has to reduce the tracking
error and achieve stability. However, the controller
parameters are not chosen on the basis of a param-
eterized model but rather through an empirical
procedure. This is often time consuming and does
not lead to an optimal feedback controller, as the
results in (Palazzo et al., 1998; Riener and Quin-
tern, 1996) show. Since the neuromusculoskeletal
model has continuous time character the design of
the required discrete controller becomes a prob-
lem. A quasi-continuous assumption fails due to
the relatively long sample time which is defined by
the stimulation frequency. A comparison between
a PID controller and a sliding mode controller can
be found in (Ježernik and Riener, 1999) based on
a simulation using a computer model of the knee
joint (Riener and Fuhr, 1998). The application
of the Ziegler-Nichols tuning rule for the PID
controller yields, as expected, unsuitable tracking
performance. This is because the tuning rule used
results in a closed loop with a damping ratio less
than 0.25. The tracking performance of the sliding
mode controller is good. However, the amplitude
and rate of change of the control signal are unac-
ceptably high. A very interesting continuous time
robust sliding mode control approach is proposed
and tested by simulation in (Durfee, 1993). It
is assumed that the moment generated at the
knee joint can be changed continuously in time.
In (Chang et al., 1997) the inverse knee joint
dynamics were modelled as a neural network and
used in the forward path of a controller with
two degrees of freedom (2DOF). As in (Palazzo
et al., 1998; Riener and Quintern, 1996), a PID-
controller is placed in the feedback path and
determined by the Ziegler-Nichols method based
on the step response of the open-loop system.
Previdi et al. (1999) describe a discrete NARX
polynomial model which is identified using data
collected in an isotonic stimulation session. Based
on the NARX model and its linearisation a gain
scheduling controller and a linear LQG controller
are determined. In comparison to the linear LQG
controller the gain scheduling controller works
in a larger operating regime, including various
equilibrium points. However, the extrapolation
behaviour of NARX polynomial models is well
known to be poor. In the case of the knee joint dy-
namics for example good extrapolation behaviour
is required to guarantee good performance near
the knee lock position (full extension). A model

reference adaptive controller (MRAC) knee joint
control in paraplegics was developed by Hatwell
et al. (1991). The design is based on a discrete
ARX model of 3rd order and uses a nonlinear
recruitment characteristic compensation scheme.
To avoid problems with parameter convergence
the parameter estimator is only switched on in the
linear region of the operating range. Consequently,
the tracking performance suffers in situations such
as full knee extension or flexion.

Based on the above analysis the design of knee-
angle controllers can generally be improved. Ap-
proaches like (Hatwell et al., 1991; Previdi et

al., 1999) point in the right direction, but the
tracking performance can still be bettered. The
2DOF structure (Palazzo et al., 1998; Chang et

al., 1997; Riener and Quintern, 1996) can be un-
suitable if the feedback controller is locally de-
signed and cannot guarantee stabilisation in the
whole operating range of interest. As a conse-
quence the stability of the 2DOF structure can be
lost. In this paper it will be shown that with a lin-
ear discrete pole-placement controller good track-
ing performance and stability can be achieved.
The design is based on a simple model of the knee
joint dynamics whose parameters are empirically
determined.

2. EXPERIMENTAL SETUP AND METHODS

To carry out our investigations the following ex-
perimental setup (cf. Fig. 1) was used: The subject
was seated on a table with the unloaded shank free
to swing. The knee angle Θ(t) is measured by an
electrogoniometer (Wood et al., 1998) and varies
from Θ(t) = 0 (rest-position) to Θ(t) = 1 (full-
extension). Using a PCMCIA data acquisition
card the angle was sampled with Ts = 100ms. The
stimulator (Phillips et al., 1993) is connected to
the laptop via the serial port and delivers constant
current rectangular pulses with pulsewidth up to
500µs. During the experiments the pulsewidth
serves as a variable control signal whereas the
current amplitude I = {50, 60, 70, 80, 90}mA and
the stimulation frequency f = 20Hz are fixed.
All implementation was done in Matlabr using
the Real Time Toolboxr (Humusoft, 1999). The
surface electrodes were positioned as shown in Fig.
1(a) (Kralj and Bajd, 1989).

2.1 Modelling

A simple discrete-time ARX-model is estimated
directly from measured input-output plant data.
The model is described by

y(k) =
B(q−1)q−nk

A(q−1)
u(k) + v(k) (1)



In E. Carson and E. Salzsieder, editors, Modelling and Control Biomedical Systems 2000 (Including
Biological Systems): A Proceedings Volume from the 4th IFAC Symposium, pages 7-12,
Karlsburg/Greifswald, Germany, March-April 2000. Elsevier Science Ltd.3

(a) (b)

Stanmore
Stimulator

RS232

Laptop
Matlabr,RTT

PCMCIA

u(k)

Θ(t)

Θ(t)

y(k)

AD-Converter

Θ(t) = 1

Θ(t) = 0

(c)

Fig. 1. Experimental setup: (a) electrode place-
ment on the quadriceps, (b) goniometer and
(c) schematic of experimental setup.

with

A(q−1) = 1 + a1q
−1 + · · · + ana

q−na (2)

B(q−1) = b0 + b1q
−1 + · · · + bnb

q−nb . (3)

Here, y is the system output (sampled knee angle),
u is the input (pulsewidth), v represents an output
disturbance and q−nk is a time delay of nk sample
steps. A and B are polynomials in the unit delay
operator q−1. The coefficients of the polynomials
are determined by the standard least squares
method. In the first step the current amplitude
is selected in such a way that the knee is fully
extended at the maximum of the control signal
range (u(k) = 0 . . . 500µs). To achieve this a ramp
in the pulsewidth is applied to the plant. From
this static experiment an operating point is taken
which represents the middle of the knee angle
range. The necessary data for the identification
are collected at this equilibrium point using a
pseudo binary random signal (PRBS) as input
with a duration of about 40s. Dividing the data
set in an estimation and validation part the model
structure and parameters have been determined in
the usual way (Åström and Wittenmark, 1997).

2.2 Controller Design

Based on the identified model a linear discrete
input-output pole-placement controller with two
degrees of freedom (2DOF) can be designed
(Åström and Wittenmark, 1997) for the selected
operating point. The controller has the general
form (see Fig. 2)

u(k) =
1

R
(Tr(k) − S(y(k) + n(k))) . (4)

Here, r(k) is the reference signal and n(k) a mea-
surement noise. R and S are the controller poly-
nomials in the delay operator, which are defined
by

R(q−1) = 1 + r1q
−1 + · · · + rnr

q−nr (5)

S(q−1) = s0 + s1q
−1 + · · · + sns

q−ns . (6)

These polynomials and the pulse transfer function
T have to be determined in such a way that the
desired output response ym to command signals r
becomes:

ym(k) = Hm(q−1)r(k) =
Bm(q−1)

Am(q−1)
r(k). (7)

It is further assumed that the controller can cancel
some of the plant poles and zeros. Assume that the
polynomials A and B are factorized as A = A+A−

and B = B+B− where A+ and B+ are the stable
factors that will be cancelled. To obtain perfect
model following the numerator Bm of the refer-
ence model Hm must contain the factor q−nkB−,
because q−nkB− cannot be cancelled. Thus, Bm

can be written as Bm = q−nkB−Bm. For the at-
tenuation of constant disturbances the controller
is required to have integral action. This means
that the controller polynomial R has to contain
the factor (1− q−1). The above requirements and
assumptions give

R = (1 − q−1)B+R (8)

S = A+S (9)

T =
BmAoA

+

Am

(10)

where the polynomial Ao is denoted as the
observer polynomial. Combining (1)-(10), the
closed-loop characteristic polynomial Acl is easily
found by

Acl = AR + q−nkBS = A+B+Ao

Acl = A+B+(A−(1 − q−1)R + q−nkB−S)

= A+B+Ao. (11)

To obtain the controller the Diophantine equation
(11) has to be solved for R,S and R,S, T com-
puted from equations (8)-(10). The specifications
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for tracking are governed by the pulse transfer
function Hm = Bm/Am. The desired regulation
behaviour is given by the observer polynomial
Ao. Separation of the disturbance and command
signal response is achieved. To see this the transfer
functions from the command signal r, the output
disturbance v and the measurement noise n to the
output y are calculated as

y =
q−nkBT

AR + q−nkBS
r +

AR

AR + q−nkBS
v

−
q−nkBS

AR + q−nkBS
n

y =
Bm

Am

r +
(1 − q−1)A−R

Ao

v

−
q−nkB−S

Ao

n. (12)

The control structure is shown in Fig. 2. Here, the
constant gain kp will be explained later and can
be assumed as kp = 1 at the moment. To achieve
unity gain of the reference model and to leave the
system zeros unchanged (B− = B,B+ = 1) the
polynomial Bm is chosen as

Bm = q−nkBAm(1)/B(1). (13)

u(k)r(k) y(k)

v(k)

1
R(q−1)

S(q−1)

T (q−1) kp

n(k)

q−nkB(q−1)
A(q−1)

Fig. 2. Controller Structure

3. RESULTS AND DISCUSSION

In the following experimental results with a neu-
rologically intact subject will be presented. The
local model and controller are designed for the
static operating point Θs = 0.7 and us = 150µs,
corresponding to a nearly extended knee. For the
plant model, obtained from the identification tri-
als, the structure is given by na = 2, nb = 0 and
nk = 2. Fig. 3 shows data from the identification
and from the identified model, given by the fol-
lowing pulse transfer function:

y(k) =
0.0005534q−2

1 − 1.21q−1 + 0.41q−2
u(k) + v(k)(14)

The plant characteristics are dependent upon the
equilibrium point. In summary, the system poles
for low knee extension are complex conjugate and
underdamped and become real and overdamped
for near-full knee extension. The system gain de-
creases by a factor of approximately 5-15 in the
same range of operation. The significant change in
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Fig. 3. Identification results for a neurologically
intact subject (I = 60mA): (a) Applied PRB-
signal (b) Measured (solid) and simulated
(dashed) system response (c) Pole/zero-map
and (d) Normalized step response of the
ARX-model.

the system gain is critical for controller design. A
controller designed for an equilibrium point with
smaller gain can destabilise the closed loop dur-
ing operation at an equilibrium point with larger
plant gain. To achieve a controller with stability
robustness it is recommended to use the linear
model with the largest gain for controller design.
Another possibility is to adapt the open-loop gain
to compensate the changing system gain. This
procedure works if a controller has already been
designed. In both cases it is assumed that the
system time constants do not vary widely for dif-
ferent operating points. Adapting the open-loop
gain means that the factor kp in Fig. 2 will be
changed. Results of control experiments are shown
in Fig. 4 and 5. Here, the controller C1, as well
as the later modification, is based on the model
(14). To specify the polynomials Am and Ao with
degree deg Am = deg Ao = 2 discretisation of a
continuous time system of 2nd order was used.
This system is defined by the rise time trAm

or
trAo

and the damping coefficient ζAm
or ζAo

. For
all controllers the design parameters are shown in
Table 1. The control signal is relatively smooth
and the knee angle of the subject follows the
filtered reference angle ym very accurately. Such a
control signal is desirable for paraplegic patients,
because a smooth control signal is less likely to
excite unwanted spastic reflexes. Although the
controller was designed for the knee angle range
Θ = 0.6 . . . 0.8 it works very well in the range
Θ = 0.3 . . . 0.9 (a range of approximate 60o). Due
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Fig. 4. Controller C1: Test of the tracking perfor-
mance; r reference signal, ym filtered refer-
ence signal (desired knee angle), y measured
knee angle, u pulsewidth.
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Fig. 5. Controller C1: Test of disturbance atten-
uation (t = 4 and t = 13s pushing down of
the leg, t = 7.5s and t = 18s lifting up of the
leg).

to the characteristics of the muscle groups during
FES it was impossible to reach an angle higher
than Θ = 0.9. For angles Θ < 0.3 stability could
not be achieved (without loss of performance).
The controller is also able to counteract distur-
bances successfully (cf. Fig. 5). The leg was dis-
turbed by pushing it downwards at t = 4 and
t = 13s and by lifting it up at t = 7.5s and
t = 18s. At t = 20s the controller goes into
saturation but comes back at t = 21s because
of the implemented antiwindup scheme (Åström
and Wittenmark, 1997). Further, the subject was
allowed to alter hip angle slightly during the ex-

Table 1 Controller design parameters
(A+ = A,B+ = 1)

Controller trAm
ζAm

trAo
ζAo

kp

C1 1s 1 0.9s 1 1
C2 0.5s 1 0.4s 1 1
C3 0.5s 1 0.4s 1 0.5
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Fig. 6. Unstable closed-loop system with con-
troller C2; r reference signal, ym filtered refer-
ence signal (desired knee angle), y measured
knee angle, u pulsewidth.
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Fig. 7. Stabilised closed-loop system with Con-
troller C3 which is identical to C2 but has
kp = 0.5. At t = 13s the leg was lifted up as
disturbance test.

periment. Changing the rise time of the reference
model to trAm

= 0.5s (controller C2), the results
shown in Fig. 6 were obtained. Now the closed-
loop system becomes unstable for the equilibrium
point Θ = 0.3 because the system gain is too high
with the fast controller specifications. Changing
the open-loop gain as suggested above by the fac-
tor kp = 0.5 (controller C3) stabilises the system
but gives poor performance for upward movement
of the leg (cf. Fig. 7). In this experiment the
upper saturation limit in the controller was set
to u = 250µs so that the reference value for the
angle r = 0.9 could not be reached. At t = 13s
the leg was lifted up as disturbance test.

4. CONCLUSIONS

It was shown that good tracking performance and
disturbance attenuation for the knee joint move-
ment can be achieved by controlled FES using
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surface electrodes. The use of a parameterized
linear model and pole-placement design provides
a fast way to determine a simple but reliable and
robust controller. Closed-loop specifications can
be easily formulated in the time-domain and are
model independent. There are plans to continue
this investigation with experiments on paraplegic
subjects. The integration of this approach into
problems like standing with a loaded knee joint
(Wood et al., 1998) will be investigated in the near
future.
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