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Abstract— We propose a consensus-based distributed voltage
control (DVC), which solves the problem of reactive power
sharing in autonomous meshed inverter-based microgrids with
inductive power lines. Opposed to other control strategies avail-
able thus far, the DVC does guarantee reactive power sharing
in steady-state while only requiring distributed communication
among inverters, i.e. no central computing nor communication
unit is needed. Moreover, we provide a necessary and sufficient
condition for local exponential stability. In addition, the perfor-
mance of the proposed control is compared to the usual voltage
droop control [1] in a simulation example based on the CIGRE
benchmark medium voltage distribution network.

I. INTRODUCTION

Microgrids represent a promising concept to facilitate the
integration of distributed renewable sources into the electrical
grid [2], [3], [4]. Two main motivating facts for the need of
such concepts are: (i) the increasing installation of renewable
energy sources world-wide – a process motivated by political,
environmental and economic factors; (ii) a large portion of
these renewable sources consists of small-scale distributed
generation (DG) units connected at the low (LV) and medium
voltage (MV) levels via AC inverters. Since the physical
characteristics of inverters largely differ from those of con-
ventional electrical generators, i.e. synchronous generators
(SGs), different control approaches are required [5].

A microgrid addresses these issues by gathering a combi-
nation of generation units, loads and energy storage elements
at distribution level into a locally controllable system. This
system can be operated either connected to or completely
isolated from the main transmission grid. An autonomous or
islanded microgrid is operated in the latter way.

Besides frequency and voltage stability, power sharing
is an important performance criterion in the operation of
microgrids [5]. Power sharing is understood as the ability
of the local controls of the individual generation sources
to achieve a desired steady-state distribution of the power
outputs of all generation sources relative to each other, while
satisfying the load demand in the network. The relevance of
this control objective lies within the fact that it allows to
prespecify the utilization of the generation units in operation.

When generation sources are connected to the network via
SGs, droop control is often used to achieve the objective of
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active power sharing [6]. Under this approach, the rotational
speed of each SG in the network is monitored locally to
derive how much power each SG needs to provide.

Inspired hereby, researchers have proposed to apply a
similar control to AC inverters [1], [7]. It has been shown
[8], [9], [10] that this heuristic decentralized control law
indeed locally stabilizes the network frequency and that the
control gains and setpoints can be chosen such that a desired
active power distribution is achieved in steady-state without
any explicit communication among the different sources.
The nonnecessity of an explicit communication system is
explained by the fact that the network frequency serves as a
common implicit communication signal.

Furthermore, in microgrids, droop control is typically also
applied with the objective to achieve a desired reactive power
distribution. The most common approach is to set the voltage
amplitude with a proportional control, the feedback signal of
which is the reactive power generation relative to a reference
setpoint [1], [11]. However, this control does in general not
guarantee a desired reactive power sharing [10], [12], [13].
As a consequence, several other (heuristic) decentralized
voltage control laws have been proposed [12], [13], [14],
[15], [16], but no general conditions or formal guarantees
for reactive power sharing are given.

Therefore, we propose in this work a consensus-based
distributed voltage control (DVC), which solves the open
problem of reactive power sharing in autonomous meshed
inverter-based microgrids with inductive power lines. Unlike
most other related communication-based control concepts,
e.g. [17], [18], the present approach only requires distributed
communication among inverters, i.e. it does not require
a central communication or computing unit nor all-to-all
communication among the inverters.

Furthermore, due to the lack in performance with respect
to reactive power sharing of the voltage control [1], the
control presented here is meant to replace the voltage control
[1] rather than complementing it in a secondary control-like
manner, as e.g. in [18], [19]. Moreover, unlike e.g. [19], we
characterize uniqueness properties of equilibrium points of
the closed-loop system and provide a necessary and sufficient
condition for local exponential stability.

We would like to emphasize that reactive power sharing is
only of practical interest in networks or clusters of networks,
where the generation units are in close electrical proximity.
This is often the case in microgrids and we only consider
such networks in this paper. Close electrical proximity usu-
ally implies close geographical distance between the different
units, which facilitates the practical implementation of a
distributed communication network.
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II. PRELIMINARIES AND NOTATION

We define the sets N := {1, . . . , n}, R≥0 := {x ∈ R|x ≥
0}, R>0 := {x ∈ R|x > 0}, R<0 := {x ∈ R|x < 0} and
T := [0, 2π). For a set U , i ∼ U denotes “for all i ∈ U”
and |U| its cardinality. Let x := col(xi) ∈ Rn denote a
vector with entries xi, i ∼ N ; 0n ∈ Rn the vector of all
zeros; 1n ∈ Rn the vector with all ones; In the n × n
identity matrix; 0n×n the n × n matrix of all zeros and
diag(ai), i ∼ N , an n × n diagonal matrix with entries
ai. For z ∈ C, <(z) denotes the real part of z and =(z)
its imaginary part. Let j denote the imaginary unit. The
conjugate transpose of a vector v is denoted by v∗. For a
matrix A ∈ Rn×n, let σ(A) := {λ ∈ C : det(λIn−A) = 0}
denote its spectrum. The numerical range or field of values
of A is defined as W (A) := {x∗Ax : x ∈ Cn, x∗x = 1}.
It holds that σ(A) ⊆ W (A) [20]. If A is symmetric then
W (A) ⊆ R and min(σ(A)) ≤ W (A) ≤ max(σ(A)) [20].
Let Asy = 1

2 (A + AT ), respectively Ask = 1
2 (A − AT ) be

the symmetric, respectively skew-symmetric part of A. Then
<(W (A)) = W (Asy) and =(W (A)) = W (Ask) [20].

The following two results are used in the paper.
Lemma 2.1: [20] Let A and B be matrices of appropriate

dimensions and let B be positive semidefinite. Then,
σ(AB)⊆W (A)W (B) :={λ=αβ|α∈W (A), β∈W (B)}.

Lemma 2.2: [21]. Let x ∈ Rn, y ∈ Rn and A ∈ Rn×n be
a matrix with constant entries. Let F : Rn → Rn, F (x) :=
col(f1(x1), . . . , fn(xn)), where fi : R → R, i = 1, . . . , n,
are nonlinear strictly monotonically increasing functions.
Consider the nonlinear algebraic equation

F (x) +Ax = y. (1)
Then, (1) possesses a unique solution in x for each y if A
is positive semidefinite.

A. Network model

We consider a generic meshed microgrid and assume that
loads are modeled by constant impedances. This leads to a set
of nonlinear differential-algebraic equations (DAE). Then,
a network reduction (called Kron-reduction [6]) is carried
out to eliminate all algebraic equations and to obtain a set
of differential equations. We assume this process has been
conducted and work with the Kron-reduced network.

In the reduced network, each node represents a DG unit
interfaced via an AC inverter. The set of nodes of this
network is denoted by N . We associate a time-dependent
phase angle δi : R≥0 → T and a voltage amplitude
Vi : R≥0 → R>0 to each node i ∈ N in the microgrid.
Two nodes i and k of the microgrid are connected via
a complex admittance Yik = Yki ∈ C. For convenience, we
define Yik := 0 whenever i and k are not directly connected
via an admittance. We denote the set of neighbors of a node
i ∈ N by Ni := {k

∣∣ k ∈ N , k 6= i , Yik 6= 0}.
We assume that the power lines of the microgrid are

lossless, i.e. all lines can be represented by purely inductive
admittances. This may be justified as follows [8], [10].
In medium (MV) and low voltage (LV) networks the line
impedance is usually not purely inductive, but has a non-
negligible resistive part. On the other hand, the inverter

output impedance is typically inductive (due to the output in-
ductor and/or the possible presence of an output transformer).
Under these circumstances, the inductive parts dominate
the resistive parts in the admittances for some particular
microgrids, especially on the MV level. We only consider
such microgrids and absorb the inverter output admittances
(together with possible transformer admittances) into the line
admittances Yik, while neglecting all resistive effects.

Then, an admittance connecting two nodes i and k can
be represented by Yik := jBik with Bik ∈ R<0. The
representation of loads as constant impedances in the original
network leads to shunt-admittances at at least some of the
nodes in the Kron-reduced network, i.e. Ŷii = Ĝii+jB̂ii 6= 0
for some i ∈ N , where Ĝii ∈ R>0 is the shunt conductance
and B̂ii ∈ R<0 denotes the shunt susceptance.

In this work, we focus on the reactive power flows. The
reactive power flow Qik : T2 ×R2

>0 → R from node i ∈ N
to node k ∈ N is given by [6]
Qik(δi(t), δk(t), Vi(t), Vk(t)) =

|Bik|V 2
i (t)− |Bik|Vi(t)Vk(t) cos(δi(t)−δk(t)). (2)

Furthermore, we make use of the standard decoupling
assumption, i.e. we assume that δi(t)− δk(t) ≈ 0 and hence
cos(δi(t)−δk(t)) ≈ 1, for all t ≥ 0 and for i ∼ N , k ∼ Ni,
see [6], [13]1. Then, the reactive power flow Qi : Rn>0 → R
at a node i ∈ N is obtained as2

Qi(V1, . . . , Vn) = |Bii|V 2
i −

∑

k∼Ni

|Bik|ViVk (3)

with Bii := B̂ii +
∑
k∼Ni

Bik. Hence,

|Bii| ≥
∑

k∼Ni

|Bik|. (4)

It follows from (3) that the reactive power Qi can be
controlled by controlling the voltage amplitudes Vi and Vk,
i ∈ N , k ∈ N . This fact is used when designing a distributed
voltage control for reactive power sharing in Section III-B.

The focus of this work is on generation units. Hence,
we express all power flows in ”Generator Reference-Arrow
System”.

B. Graph theory

Since the proposed voltage control is distributed, it re-
quires communication among the generation units in the net-
work. We employ a graph theoretic notation [22] to describe
the high-level properties of the communication network.

An undirected graph of order n is a tuple G := (V, E),
where V := {1, . . . , n} is the set of nodes and E ⊆ V × V,
E := {e1, . . . , em} is the set of undirected edges. The
l-th edge connecting nodes i and k is denoted as el =
{i, k} = {k, i}. A node represents an individual agent, i.e. a
generation source in the present case. The set of neighbors
of a node i is denoted by Ci and contains all k for which
el = {i, k} ∈ E . If there is an edge between two nodes i and
k, then i and k can exchange their local measurements with

1All our results also hold for arbitrary, but constant angle differences, i.e.
δi(t)− δk(t) = δik, δik ∈ T, at the cost of a more complex notation.

2To simplify notation the time argument of all signals is omitted from
now on.
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each other. We assume that the graph contains no self-loops,
i.e. there is no edge el = {i, i}.

The |V| × |V| adjacency matrix A has entries
aik = aki = 1 if an edge between i and k exists and aik = 0
otherwise. The degree of a node i is given by di =

∑n
k=1 aik.

With D := diag(di) ∈ Rn×n, the Laplacian matrix of an
undirected graph is given by L := D −A and is symmetric
positive semidefinite [22].

A path in a graph is an ordered sequence of nodes
such that any pair of consecutive nodes in the sequence is
connected by an edge. G is called connected if for all pairs
(i, k) ∈ V × V, i 6= k, there exists a path from i to k.
Given an undirected graph, zero is a simple eigenvalue of
its Laplacian matrix L if and only if the graph is connected.
Moreover, a corresponding right eigenvector to this simple
zero eigenvalue is then 1n, i.e. L1n = 0n [22].

The nodes in the communication and in the electrical net-
work are identical, i.e. N ≡ V. Note that the communication
topology may, but does not necessarily have to, coincide with
the topology of the electrical network, i.e. we may allow
Ci 6= Ni for any i ∈ V.

III. INVERTER MODELING AND DISTRIBUTED VOLTAGE
CONTROL FOR REACTIVE POWER SHARING

A. Inverter model

We model the inverters as controllable AC voltage sources
the amplitude and frequency of which can be defined by the
designer [23].3 Then, the inverter at the i-th node can be
represented by [10], [24]

δ̇i = uδi ,

τVi
V̇i = −Vi + uV

i ,
(5)

where uδi : R≥0 → R, uVi : R≥0 → R are controls
and τVi

∈ R>0 is the time constant of a low-pass filter
representing an input delay in the voltage. It is also assumed
that the reactive power output is measured and processed
through a low pass filter [7]

τPi
Q̇mi = −Qmi +Qi, (6)

where Qi is given in (3) and τPi
∈ R>0 is the time constant

of the filter. We furthermore associate to each inverter its
power rating SNi ∈ R>0, i ∼ N .

Due to the decoupling assumption in II-A, we neglect the
dynamics of δi in the following. Furthermore, in practice
τPi
� τVi

, hence we assume τVi
= 0. The model (5), (6)

can then be reduced to
Vi = uV

i ,

τPi
Q̇mi = −Qmi +Qi,

(7)

on which our further analysis is focused.

B. Distributed voltage control for reactive power sharing

We employ the following definition of proportional reac-
tive power sharing.

3An underlying assumption to this model is that whenever the inverter
connects an intermittent renewable generation source, e.g. a photovoltaic
plant, to the network, it is equipped with some sort of storage (e.g., battery).
Thus, it can increase and decrease its power output in a certain range.

Definition 3.1: Let χi ∈ R>0 denote weighting factors
and Qsi the steady-state reactive power flow, i ∼ N . Then,
two inverters at nodes i and k are said to share their reactive
powers proportionally according to χi and χk if

Qsi
χi

=
Qsk
χk

.

Remark 3.2: From (7) it follows that in steady-state
Q̇mi = 0 and hence Qm,si = Qsi , where the superscript s
denotes signals in steady-state.

Remark 3.3: A practical choice for χi would, e.g. be
χi = SNi , where SNi ∈ R>0 is the nominal power rating
of the i-th inverter.
Inspired by consensus-algorithms [25], we propose the fol-
lowing distributed voltage control (DVC) uVi for an inverter
at node i ∈ N

uVi = V di − ki
∫ t

0

ei(τ)dτ,

ei :=
∑

k∼Ci

(
Qmi
χi
− Qmk

χk

)
=
∑

k∼Ci

(Q̄i − Q̄k),
(8)

where V di ∈ R>0 is the desired (nominal) voltage am-
plitude and ki ∈ R>0 a feedback gain. Furthermore, for
convenience we have defined the weighted reactive power
flows Q̄i := Qmi /χi, i ∼ N . Recall that Ci, cf. II-B, is the
set of neighbor nodes of node i in the graph induced by
the communication network, i.e. the set of nodes the i-th
node can exchange information with. The control scheme is
illustrated for the inverter at the i-th node in Fig. 1.

Remark 3.4: The proposed DVC (8) is a distributed con-
trol that requires communication infrastructure. Unlike [17],
[18], the DVC does not require a central control and/or
communication unit nor all-to-all communication. The only
requirement on the communication topology is that the graph
induced by the communication network is connected.

Remark 3.5: The usual voltage droop control for micro-
grids with inductive power lines is given by [1], [11]

uVi = V di − kQi(Q
m
i −Qdi ), (9)

where kQi
∈ R>0 is the feedback (droop) gain and Qdi ∈ R

the setpoint for the reactive power output of the i-th inverter.
Opposed to the DVC (8), the control law (9) is decentralized,
i.e. the feedback signal is the locally injected reactive power
Qi. It does therefore not require communication. However,
it does not guarantee reactive power sharing [10], [12], [13].

Remark 3.6: In addition to reactive power sharing, it may
be desired that the voltage amplitudes Vi remain within
certain boundaries. With the above control law (8), where
the voltage amplitudes are actuator signals, this can, e.g. be
ensured by saturating the control signal uVi . For mathemati-
cal simplicity, we do not consider this in the present analysis.

Differentiating Vi = uVi with respect to time and combin-
ing (7) and (8), yields the following closed-loop dynamics
for the i-th node, i ∈ N ,

V̇i = −ki
∑

k∼Ci

(
Qmi
χi
− Qmk

χk

)
, Vi(0) = V di ,

τPi
Q̇mi = −Qmi +Qi, Qmi (0) =: Qmi0,

(10)
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Fig. 1: Block diagram of the DVC (8) for an inverter at node i ∈ N . Vi is the
voltage amplitude, V d

i its desired value, Qm
i the measured reactive power

and Q̄i the weighted reactive power, where χi is the weighting coefficient
to ensure proportional reactive power sharing and ki is a feedback gain.

and the interaction between nodes is modeled by (3). Note
that Vi(0) is determined by the control law (8). By recalling
from II-B that L ∈ Rn×n is the Laplacian matrix of the
communication network and defining the matrices

T := diag(τPi
) ∈ Rn×n, D := diag(1/χi) ∈ Rn×n,

K := diag(ki) ∈ Rn×n,
as well as the column vectors V ∈Rn>0, Q∈Rn and Qm∈Rn
V := col(Vi), Q := col(Qi), Qm := col(Qmi ), (11)

the complete closed-loop system dynamics can be written
compactly in matrix form as

V̇ = −KLDQm,
T Q̇m = −Qm +Q, (12)

where Qi = Qi(V ) is given by (3).

IV. STABILITY AND REACTIVE POWER SHARING

We start by proving that the proposed DVC (8) does indeed
guarantee proportional reactive power sharing in steady-state.

Claim 4.1: The DVC (8) achieves proportional reactive
power sharing in steady-state in the sense of Definition 3.1.

Proof: Set V̇ = 0 in (12). Note that, since L is
the Laplacian matrix of an undirected connected graph, it
has a simple zero eigenvalue with a corresponding right
eigenvector β1n, β ∈ R \ {0}. All its other eigenvalues are
positive real. Moreover, K is a diagonal matrix with positive
diagonal entries and from (12) in steady-state Qs = Qm,s.
Hence, for β ∈ R \ {0} and i ∼ N , k ∼ N

0n = −KLDQs ⇔ DQs = β1n ⇔
Qsi
χi

=
Qsk
χk

. (13)

To analyze properties of equilibria of the system (12), (3),
we make the following assumption.

Assumption 4.2: For every Qm,s = Qs(V s) ∈ Rn>0 satis-
fying the steady-state condition (13), there exists a V s ∈ Rn>0

satisfying (3), i ∼ N .
Remark 4.3: Because of (13) all entries of

Qm,s = Qs(V s) must have the same sign. Since we
consider networks with inductive power lines and loads,
only Qm,s = Qs(V s) ∈ Rn>0 is practically relevant.

The next result characterizes uniqueness properties of
equilibria of the system (12), (3).

Proposition 4.4: Consider the system (12), (3) satisfying
Assumption 4.2. Then to each positive vector of reactive
power flows Qs there exists a unique positive vector of
voltage amplitudes V s.

Proof: Assume Qs ∈ Rn>0 given. Because of

Qsi = |Bii|V s
2

i −
∑

k∼Ni

|Bik|V si V sk , i ∼ N , (14)

no element V si can be zero. Hence, (14) can be rewritten as

−Q
s
i

V si
+ |Bii|V si −

∑

k∼Ni

|Bik|V sk = 0, i ∼ N ,

or, more compactly, F (V s) + RV s = 0n, where
F (V s) := col(−Qsi/V si ) and R ∈ Rn×n with entries
rii := |Bii|, rik := −|Bik|, i 6= k. Clearly, for V si > 0, the
expression (−Qsi/V si ) is strictly monotonically increasing in
V si and because of (4) R is positive semidefinite. Uniqueness
then follows from Lemma 2.2.
We proceed by establishing a condition for local stability
of equilibria of the system (12), (3). To this end, we make
the following important observation. Recall that 1TnL = 0Tn .
Hence, multiplying the first equation in (12) from the left
with 1TnK

−1 yields

1TnK
−1V̇ = 0TnDQ

m ⇒
n∑

i=1

V̇i
ki

= 0. (15)

Consequently, by integrating (15), the motion of an arbitrary
voltage Vi, i ∈ N , can be expressed in terms of all other
voltages Vk, k ∼ N \ {i} for all t ≥ 0. This implies that
studying the stability properties of equilibra of the system
(12), (3) with dimension 2n, is equivalent to studying the
stability properties of corresponding equilibria of a reduced
system of dimension 2n−1. For ease of notation and without
loss of generality, we define the reduced voltage vector as

VR := col(Vi) ∈ Rn−1>0 (16)
and choose to express Vn by integrating (15) as

Vn = Vn(V (0), VR) =

n∑

i=1

Vi(0)

ki
−
n−1∑

i=1

kn
ki
Vi

=

n∑

i=1

V di
ki
−
n−1∑

i=1

kn
ki
Vi,

(17)

since Vi(0) = V di , i ∼ N . We denote the reactive power
flows in the reduced coordinates by

Qi(V1, . . . , Vn−1) = |Bii|V 2
i −

∑

k∼Ni

|Bik|ViVk, (18)

i ∼ N , with Vn given by (17). By defining the matrix LR
LR :=

[
In−1 0n−1

]
KL ∈ R(n−1)×n, (19)

the system (12), (3) can be written in the reduced coordinates
col(VR, Qm) ∈ Rn−1>0 × Rn as

V̇R = −LRDQm,
T Q̇m = −Qm +Q,

(20)

with Q := col(Qi) ∈ Rn and Qi, i ∼ N , given in (18). It
follows from (17) that

∂Vn(V1, . . . , Vn−1)

∂Vi
= −kn

ki
, i ∼ N \ {n}.

Consequently,
∂Qk
∂Vi

=
∂Qk
∂Vi

− kn
ki

∂Qk
∂Vn

, i ∼ N \ {n}. (21)

Let xs := col(V sR, Q
m,s) be the corresponding equilibrium

point to col(V s, Qm,s) defined in Assumption 4.2. By intro-

1302



ducing the matrix

N :=
∂Q

∂V

∣∣∣
V s
∈ Rn×n

with entries (use (3))
nii :=2|Bii|V si−

∑

k∼Ni

|Bik|V sk , nik :=−|Bik|V si , i 6= k, (22)

as well as the matrix R ∈ Rn×(n−1)

R :=

[
I(n−1)
−bT

]
, b := col

(
kn
k1
, . . . ,

kn
kn−1

)
, (23)

and making use of (21), it follows that
∂Q
∂VR

∣∣∣
V s
R

= NR. (24)

To derive an analytic stability condition, it is convenient
to assume identical low pass filter time constants.

Assumption 4.5: The time constants of the low pass filters
in (12) are chosen such that τ = τP1

= . . . = τPn
.

Furthermore, we define the deviations of the system vari-
ables with respect to xs as
ṼR := VR − V sR ∈ Rn−1, Q̃m := Qm −Qm,s ∈ Rn.

By making use of (24) together with Assumption 4.5, lin-
earizing the system (20), (18) at xs yields[

˙̃VR
˙̃Qm

]
=

[
0(n−1)×(n−1) −LRD

1
τNR − 1

τ In

]

︸ ︷︷ ︸
:=A

[
ṼR
Q̃m

]
. (25)

The following two relations are helpful to establish our claim
RLR = R

[
In−1 0n−1

]
KL

= K

[
In−1 0n−1
−1Tn−1 0

]
L = KL, (26)

and

RTK−11n = 0n−1. (27)

Lemma 4.6: For Qs, V s ∈ Rn>0, all eigenvalues of N
have positive real part.

Proof: Dividing (14) by V si > 0 yields
Qsi
V si

= |Bii|V si −
∑

k∼Ni

|Bik|V sk > 0. (28)

Furthermore, from (4) it follows that
|Bii|V si ≥

∑

k∼Ni

|Bik|V si . (29)

Hence, with nii and nik defined in (22), we have that
nii = 2|Bii|V si −

∑

k∼Ni

|Bik|V sk > |Bii|V si ≥
∑

k∼N\{i}

|nik|.

Therefore, N is a diagonally dominant matrix with positive
diagonal elements and the claim follows from Gershgorin’s
disc theorem [20].

Lemma 4.7: For Qs, V s ∈ Rn>0, the matrix product
NDLD has a zero eigenvalue with geometric multiplicity
one and a corresponding right eigenvector βD−11n, β ∈
R \ {0}; all other eigenvalues have positive real part.

Proof: The matrix D is diagonal with positive diagonal
entries and hence positive definite. Furthermore, L is the
Laplacian matrix of an undirected connected graph and
therefore positive semidefinite. In addition, L has a simple
zero eigenvalue with a corresponding right eigenvector β1n,

β ∈ R \ {0} and Lemma 4.6 implies that N is nonsingular.
Hence, NDLD has a zero eigenvalue with geometric multi-
plicity one and a corresponding right eigenvector βD−11n,
β ∈ R \ {0}. In addition, DLD is positive semidefinite and
by Lemma 2.1 it follows that

σ(NDLD) ⊆W (N)W (DLD).

The aforementioned properties of D and L imply that
W (DLD) ⊆ R≥0. To prove that all eigenvalues apart from
the zero eigenvalue have positive real part, we show that
<(W (N)) ⊆ R>0. This also implies that the only element
of the imaginary axis in W (N)W (DLD) is the origin. To
see this, we recall that the real part of the numerical range
of N is given by the range of its symmetric part, i.e.

<(W (N)) = W

(
1

2

(
N +NT

))
.

The symmetric part of N has entries

n̄ii := nii, n̄ik := −1

2
|Bik|(V si + V sk ),

where nii is defined in (22). From (28) it follows that
|Bii|V si >

∑

k∼Ni

|Bik|V sk .

Hence, together with (29), it follows that

|Bii|V si >
1

2

∑

k∼Ni

|Bik|(V si + V sk ) =
∑

k∼N\{i}

|n̄ik|

and
n̄ii = 2|Bii|V si −

∑

k∼Ni

|Bik|V sk > |Bii|V si >
∑

k∼N\{i}

|n̄ik|.

Consequently, the symmetric part of N is diagonally domi-
nant with positive diagonal entries and by Gershgorin’s disc
theorem its eigenvalues are all positive real.
We are now ready to state our main result.

Proposition 4.8: Consider the system (12), (3) satisfying
Assumption 4.2. Fix D and τ > 0. Select τPi = τ, i ∼ N
and K = D. Denote by xs = col(V sR, Q

m,s) ∈ R2n−1
>0 the

corresponding equilibrium point of the reduced system (20),
(18). Let µi = ai + jbi be the i-th nonzero eigenvalue of the
matrix product NDLD with ai ∈ R and bi ∈ R. Then, xs is
an exponentially stable equilibrium point of the system (20),
(18) if and only if

τb2i < ai. (30)

for all µi. Moreover, xs is exponentially stable for any τ > 0
if and only if NDLD has only real eigenvalues.

Proof: We have just shown that with τPi = τ, i ∼ N ,
the linear system (25) locally represents the microgrid dy-
namics (12), (18). The proof is thus given by deriving the
spectrum of A defined in (25). Let λ be an eigenvalue of
A with a corresponding right eigenvector v = col(v1, v2),
v1 ∈ Cn−1, v2 ∈ Cn. Then,

−LRDv2 = λv1, NRv1 − v2 = τλv2. (31)

We first prove by contradiction that zero is not an eigenvalue
of A. Therefore, assume λ = 0. Then,

LRDv2 = 0n−1. (32)

1303



From the definition of LR given in (19) it follows that (32)
can only be satisfied if

KLDv2 = col(0n−1, a), a ∈ C.
The fact that L = LT together with L1n = 0n implies that
1TnK

−1KLDv = 0 for any v ∈ Cn. Therefore,
1TnK

−1KLDv2 = 1TnK
−1col(0n−1, a) = 0.

Hence, a must be zero. Consequently, v2 = βD−11n, β ∈ R.
Inserting λ = 0 and v2 = βD−11n in (31) and recalling
K = D yields

NRv1 = βD−11n = βK−11n. (33)
Premultiplying with v∗1RT gives, because of (27),

v∗1RTNRv1 = 0.

The proof of Lemma 4.7 implies <(W (N)) ⊆ R>0. Hence,
Rv1 = 0n. (34)

Consequently, because of (33), β = 0 and v2 = 0n. Finally,
because of (23), (34) implies v1 = 0n−1. Hence, (31) can
only hold for λ = 0 if v1 = 0n−1 and v2 = 0n. Therefore,
zero is not an eigenvalue of A.

To establish conditions under which all eigenvalues of A
have negative real part, notice that, for λ 6= 0, (31) can be
rewritten as

τλ2v2 + λv2 +NRLRDv2 = 0n.

Recalling (26) and K = D yields
τλ2v2 + λv2 +NDLDv2 = 0n. (35)

This implies that v2 must be an eigenvector of NDLD.
Recall that Lemma 4.7 implies that NDLD has a zero
eigenvalue with geometric multiplicity one and all its other
eigenvalues have positive real part. For NDLDv2 = 0n,
(35) has solutions λ = 0 and λ = −1/τ. Recall that zero is
not an eigenvalue of A. Hence, we have λ1 = −1/τ as first
eigenvalue (with unknown algebraic multiplicity) of A.

Denote the remaining4 eigenvalues of NDLD by µi ∈ C.
Let a corresponding right eigenvector be given by wi ∈ Cn,
i.e. NDLDwi = µiwi. Without loss of generality, choose
wi such that w∗iwi = 1. By multiplying (35) from the right
with w∗i , the remaining 0 ≤ m ≤ 2n − 2 eigenvalues of A
are the solutions λi1,2 of

τλ2i1,2 + λi1,2 + µi = 0. (36)
First, consider real nonzero eigenvalues, i.e. µi = ai with
ai > 0. Then, clearly, both solutions of (36) have nega-
tive real parts, e.g. by the Hurwitz condition. Next, con-
sider complex eigenvalues of NDLD, i.e. µi = ai + jbi,
ai > 0, bi ∈ R \ {0}. Then, from (36) we have

λi1,2 =
1

2τ

(
−1±

√
1− 4τ(ai + jbi)

)
. (37)

We define αi := 1 − 4aiτ , βi := −4biτ and recall that the
roots of a complex number

√
αi + jβi, βi 6= 0, are given by

±(ψi + jνi), ψi ∈ R, νi ∈ R, [26] with

ψi =

(
0.5

(
αi +

√
α2
i + β2

i

))−0.5
.

4Neither the algebraic multiplicities of the eigenvalues of NDLD nor the
geometric multiplicities of its nonzero eigenvalues are known in the present
case. However, this information is not required, since it suffices to know
that <(σ(NDLD)) ⊆ R≥0. This fact has been proven in Lemma 4.7.

Thus, both solutions λi1,2 in (37) have negative real parts if
and only if(

0.5

(
αi +

√
α2
i + β2

i

))−0.5
< 1⇔

√
α2
i + β2

i < 2−αi.
Inserting αi and βi gives√

(1− 4aiτ)2 + 16b2i τ
2 < 1 + 4aiτ,

where the right hand side is positive. The condition is
therefore equivalent to

b2i τ < ai,

which is condition (30). Hence, A is Hurwitz if and only
if (30) holds for all µi. Finally, the equilibrium point xs is
locally exponentially stable if and only if A is Hurwitz [27].

V. SIMULATION EXAMPLE

The performance of the proposed DVC (8) is now demon-
strated and compared with the usual voltage droop control
(9) via a simulation example based on the inner ring of
the islanded Subnetwork 1 of the CIGRE benchmark MV
distribution network [28]. In particular, we show the ability
of the DVC (8) to quickly achieve a desired reactive power
distribution after changes in the load.

The network consists of eight main buses and is shown
in Fig. 2. We assume that the generation sources at buses
9b, 9c, 10b and 10c are operated with the DVC (8), re-
spectively the droop control (9). The remaining sources
are operated in PQ-mode. The distributed communication
network is also depicted in Fig. 2. Note that the commu-
nication is not all-to-all and that there is no central unit.
The simulations are carried out in Plecs [29].

We associate to each inverter a power rating
SN = [0.517, 0.353, 0.333, 0.023] pu, where pu denotes per
unit values with respect to the base power Sbase = 3 MVA.
For the DVC (8), we select a multiple of the nominal power
rate of each source as weighting coefficient, i.e. χi = 5SNi ,
i ∼ N (cf. Remark 3.3) and, following Proposition 4.8, we
set K = D. On the basis of selection criteria for frequency-
active power droop [10], the parameters of the control (9)
are set to Qdi = 0.2SNi pu and kQi

= 0.1/SNi pu/pu. For
both controls, we set V di = 1 pu. To satisfy Assumption 4.5,
the low pass filter time constants are set to τPi

= 0.2 s,
i ∼ N . The frequencies of the inverters are controlled with
the usual frequency droop control, see e.g. [10], [11].

We consider the following scenario: at first, the system
is operated under nominal loading conditions. Then, at
t = 0.5 s, there is an increase in load at buses 3 and 9. We
compare the reactive power outputs and voltage trajectories
of the inverters under the controls (8), respectively (9).

The simulation results are shown for the system (7)
operated with the DVC (8) in Fig. 3a and with the droop
control (9) in Fig. 3b. The system quickly reaches a steady-
state under both controls after the load change at t = 0.5 s.
However, under the droop control (9), the reactive power is
not shared by all inverters in proportion of their ratings. On
the contrary and as predicted, the DVC (8) does achieve a
desired reactive power distribution in steady-state.
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Fig. 2: 20 kV MV benchmark model adapted from [28] with eight main
buses and generation sources of type: PV-Photovoltaic, FC-fuel cell, Bat-
battery, CHP-CHP fuel cell. The symbol ↓ denotes a load and PCC denotes
the point of common coupling to the main grid.

Moreover, compared to the droop control (9), the voltage
levels remain close to the nominal value V d = 1. This
becomes especially obvious from the voltage trajectories
after the load step at t = 0.5 s, where all voltages are
decreased under the droop control (9). Here, the DVC (8)
merely causes small variations in the voltage amplitudes in
order to satisfy the increased reactive power demand by the
loads. This is an indication that no secondary voltage control
may be necessary when operating the inverters with the DVC
(8) – a clear advantage over the droop control (9).

Local stability under the control (8) is confirmed for both
operating points via Proposition 4.8.

VI. CONCLUSION

We have proposed a consensus-based distributed voltage
control (DVC), which solves the problem of reactive power
sharing in inverter-based microgrids with inductive power
lines. Unlike the widely used voltage droop control [1], [11],
the DVC does guarantee a desired reactive power distribution
in steady-state. Moreover, we have provided a necessary
and sufficient condition for local exponential stability. The
performance gain in terms of power sharing compared to
the usual voltage droop control has been demonstrated in a
simulation example. Future research will address the analysis
of microgrids, in which the generation units are equipped
with frequency droop control together with the DVC.
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