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Abstract— We consider the problem of frequency synchro-
nization and power sharing in a lossy droop-controlled au-
tonomous microgrid with distributed rotational and electronic
generation (MDREG). At first, we establish equivalence of the
dynamics of a regulated synchronous generator and a droop-
controlled inverter with low pass filter. We then give a neces-
sary and sufficient condition for local synchronization of the
microgrid by using ideas from graph theory and second order
consensus algorithms. In addition, we show that sources in an
MDREG can achieve a desired active power distribution via
frequency droop control and provide synchronization conditions
for a lossless microgrid as a special case. Our analysis is further
validated via a simulation example of a lossy microgrid based on
the CIGRE benchmark medium voltage distribution network.

I. INTRODUCTION

Motivated by environmental, political, economic and tech-
nological aspects, electric power systems worldwide are
undergoing large changes due to an increasing amount of
renewable energy sources. Since many of the latter are small-
scale distributed generation units connected at the low (LV)
and medium voltage (MV) levels via AC inverters, the power
generation structure is moving from large, centralized plants
to smaller, distributed generation (DG) units. Additionally,
the physical characteristics of inverters largely differ from
the characteristics of conventional electrical generators, i.e.
synchronous generators (SGs), requiring different control
approaches [1].

Therefore, new concepts and strategies to operate the
electric power system that ensure a reliable and stable oper-
ation are needed. In this context, the microgrid concept has
attracted increasing attention in recent years [2], [3] and has
also been identified as a key component in future electrical
networks [4]. It addresses these issues by gathering a combi-
nation of generation units, loads and energy storage elements
at distribution level into a locally controllable system, which
can be operated in a decentralized and completely isolated
manner from the main transmission system. An autonomous
or islanded microgrid is operated in the latter mode.

An important problem in microgrid operation is frequency
synchronization while sharing the power demand among the
different generation units. The problem of power sharing
mainly addresses the following question: how should the
different generation units in the network adjust their out-
put power upon load changes to fulfill the demand while
satisfying a desired power distribution? It is a requirement
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to achieve these objectives in a decentralized way without
communication among units, thereby allowing a plug-and-
play-like operation [2].

A control solution widely used to tackle this problem
in large power systems is droop control [5]. Under this
approach, the current value of the rotational speed of each
SG in the network is monitored locally to derive how much
power each SG needs to provide. Since performance under
droop control is satisfactory for large systems, this technique
has been adapted to inverters [6], [7]. Stability analysis of
droop-controlled inverter-based systems is usually carried
out by means of detailed small-signal analysis as well as
extensive simulations and experimental studies aiming to
characterize an admissible range for the control gains for
system stability. Recently, conditions for proportional power
sharing and synchronization of lossless microgrids with first-
order inverter models have been derived [8] by applying
results of the theory of coupled oscillators.

So far, most research on stability and power sharing of
microgrids has focused on purely inverter-based systems.
However, from a practical consideration, most present and
near-future applications concern networks of mixed genera-
tion structure including SGs and inverter-interfaced dis-
tributed resources. We will refer to such a system as a mi-
crogrid with distributed rotational and electronic generation
(MDREG). In MDREGs, SGs may for example be used in
combination with diesel engines or gas turbines [9]. Stability
and performance of such systems have not yet been much
explored from a system theoretic point of view. In [10] and
[11] MDREGs that consist of two inverters and one to two
SGs are investigated via simulations complemented by a
numerical small signal stability analysis.

We address this open problem by deriving analytic local
synchronization conditions for an autonomous MDREG by
means of graph theory and second order consensus al-
gorithms for multi-agent systems. Second order consensus
algorithms have been used to study synchronization of har-
monic oscillators [12] and have recently also been applied
to frequency restoration in conventional power systems [13].

The main contributions of this work are: first, we establish
equivalence of the dynamics of a regulated SG and an in-
verter equipped with the typically proposed frequency droop
control combined with a low pass filter, e.g. for power mea-
surement [7]. Altough several authors have proposed to make
inverters resemble the input/output behavior of SGs [14],
[15], to the best of our knowledge, this observation has not
been stated in the literature in a mathematically rigorous
fashion to date. Second, we provide a necessary and sufficient
local synchronization condition for a lossy MDREG, i.e. a
MDREG with nonzero transfer conductances. The presence



of transfer conductances leads to non-symmetric network
interconnections, complicating significantly the derivation
of analytic stability conditions. Here, we do not make
any assumptions on the power line characteristics nor the
voltage levels, but assume uniform damping, as sometimes
used in analysis of lossy conventional power systems [16].
Subsequently, we apply our results to derive synchronization
conditions for lossless microgrids. In the latter case, the
network interconnections are symmetric and we drop the
assumption of uniform damping. We further indicate how a
desired power distribution can be achieved in a synchronized
state. Our analysis is validated in a simulation example based
on the CIGRE benchmark MV distribution network [17].

II. PRELIMINARIES AND NOTATION

Let x := col(xi){i=1,...,n} ∈ Rn denote an n× 1 column
vector with entries xi, 1n denote the n × 1 column vector
of all ones, 0n denote the n × 1 column vector of all
zeros and diag(ai), i = 1, . . . n denote an n × n diagonal
matrix with entries ai. Let j denote the imaginary unit. The
conjugate transpose of a vector v is denoted by v∗. We de-
fine the sets R+ := {x ∈ R|x > 0}, R+

0 := {x ∈ R|x ≥ 0},
R− := {x ∈ R|x < 0} and T := [−π, π] with −π and π
identified. For a set U := {ν1, . . . , νn}, i ∼ U denotes
i = ν1, . . . , νn.

A. Graph theory

This section provides a brief overview of graph theoretic
notions employed in this paper. For further information, the
reader is referred to, e.g. [18].

A weighted directed graph of order n is a 3-tuple
G := (V, E , w), where V := {1, . . . , n} is the set of nodes,
E ⊆ V × V is the set of edges, i.e. ordered pairs of nodes
(i, k) and w : E → R+ is a weight function.

Some notions associated with weighted directed graphs are
the |E|×|V| incidence matrix Q, the |E|×|E| diagonal matrix
of edge weights W and the index set I. Given an (arbitrary)
ordering of the edges in the graph, each row of Q and each
diagonal entry of W correspond to an edge of the graph.
Namely Qli = 1 and Qlk = −1 if i is the initial and k the
final node of the lth edge el ∈ E and Wll = w(i, k), where
w(i, k) is the edge weight associated to el. Note that if there
is an edge from i to k and an edge from k to i, then these
two edges are described by two linearly dependent rows of
Q. The index set I has entries χm := (i, k), m = 1, . . . , |E|
if there exists an edge from node i to node k.

We further use the |V| × |E| orientation matrix C with
entries Cki := 1 if Qik = 1 and 0 otherwise, introduced in
[19]. With C, the Laplacian matrix of a weighted directed
graph with positive edge weights is given by

L := CWQ. (1)
The diagonal entries of L are nonnegative, its off-diagonal
entries are nonpositive and its row sums are 0.

A path between two nodes is a directed chain of edges. G
is called strongly connected if for all i, k ∈ V , there exists a
path from i to k. Given a weighted directed graph, zero is a
simple eigenvalue of its Laplacian L if the graph is strongly
connected. All nonzero eigenvalues of L have a positive real
part [18].

B. Electrical networks
Typically, a time-dependent phase angle δi : R+

0 → T and
a voltage amplitude Ei : R+

0 → R+ are associated to each
node i in a power network. Furthermore, two nodes i and k
are connected via a power line characterized by a complex
admittance Ỹik = Ỹki := G̃ik + jB̃ik ∈ C with conductance
G̃ik ∈ R+

0 and susceptance B̃ik ∈ R−. Usually in power
system stability analysis, the power lines are assumed to be
lossless, i.e. G̃ik = 0 [5]. While this assumption is reasonable
on the transmission level, it does not hold in general for a
microgrid on the MV or LV level. We will therefore focus
our analysis on the more general case of a lossy network, i.e.
G̃ik 6= 0, while treating the lossless network as a special case.
We assume constant though not necessarily equal voltage
amplitudes Ei throughout the paper. Then, constant power
loads can equivalently be represented by constant impedance
loads of the form PLi

:= G̃iiE
2
i , where PLi

denotes the
active power consumed by the load at node i and G̃ii is a self-
admittance. Nodes to which only such loads are connected
are called passive nodes. A standard procedure in power
system stability analysis is then to eliminate all passive
nodes via the so-called Kron-reduction [5] leading to a lower
dimensional representation of the original network in which
all nodes represent generation units.

We assume that this process has been carried out and
consider a model of a Kron-reduced lossy microgrid. This
microgrid is formed by n := n1 + n2 nodes, of which
VI := {1, . . . , n1} represent DG units interfaced via AC
inverters and VSG := {(n1 + 1), . . . , n} are DG units inter-
faced via SGs. We denote the Kron-reduced network graph
by G, its set of nodes by V := (VI ∪ VSG) and its edge
set by E . To each node i ∈ V a phase angle δi(t) and
a constant voltage amplitude Ei ∈ R+ are associated. We
further assume that G is strongly connected. This assumption
is reasonable for a microgrid, unless severe line outages
separating the system into several disconnected parts occur.

For ease of notation, we will write angle differences as
δik := δi − δk, whenever convenient. Further, we denote by
ωR ∈ R+ the rated network frequency and express all
internal frequencies ω̂i : R+

0 → R relative to a synchronously
rotating reference frame with constant angular velocity ωR

δ̇i(t) := ωi(t) := ω̂i(t)− ωR, i ∼ V. (2)
This is a common approach in power systems, see, e.g.
[5], [20] for details. For convenience, we define the vectors
δ(t) := col(δi(t)){i∼V} and ω(t) := col(ωi(t)){i∼V}.

The active power flow Pik : T2 → R from a node i ∈ V
to a node k ∈ V is given by [5]
Pik(t) = GikE

2
i +|Yik|EiEk sin(δi(t)−δk(t) + φik) (3)

with admittance magnitude |Yik| :=
√
G2
ik +B2

ik and ad-
mittance angle φik := arctan(Gik/Bik). The overall active
power flow Pi : Tn → R at a node i ∈ V is obtained by

Pi(t) = GiiE
2
i+

n∑
k=1, k 6=i
Yik 6=0

|Yik|EiEk sin(δi(t)−δk(t)+φik) (4)

with Gii := Ĝii +
∑n
k=1,k 6=iGik, where Ĝii denotes the

shunt conductance at node i. Since we are mainly concerned
with dynamics of generation units, we express all power
flows in ”Generator Reference-Arrow System”.



C. Synchronization
We employ the following definition of synchronization.
Definition 2.1: The microgrid achieves synchronization

asymptotically if limt→∞ |ωi − ωk| = 0 and
limt→∞ |δi − δk| = |δsik| ≥ 0, where δsik 6= δsik(δ(0), ω(0))
is constant for all i, k = 1, . . . , n.
We denote the vector of angles of a synchronized solution
by δs : R+

0 → Tn and the synchronization frequency by
ωs : R+

0 → R.

D. Droop control
In a so-called regulated machine at a node i ∈ VSG,

the turbine is connected to a governing system allowing to
control the turbine mechanical power output PMi

: R+
0 → R

and speed. These systems are usually equipped with droop
control, which adapts the mechanical power in dependency
of the turbine speed. Assuming a linear relationship between
the valve position and the mechanical power as well as ideal
governor dynamics and noting that the mechanical speed
ωMi

: R+
0 → R is connected to the electrical speed ωi via

ωi = (pi/2)ωMi with pi being the number of machine poles,
droop control can be represented as uGi

:R+
0 →R [5], [21]

uGi(t) = PMi(t) = P dMi
− 1

k̃Pi

ωi(t). (5)

This is a proportional control law with input signal ωi, gain
1/k̃Pi ∈ R+ and output PMi . The constant P dMi

∈ R+ is the
reference setpoint for the mechanical power.

Since droop control is a widely used control solution to
address the problem of power sharing in large conventional
power systems [5], researchers have proposed to also apply
this technique to inverters.Opposed to an SG,an inverter does
not have an inherent physical relation between frequency
and generated active power. Frequency droop control aims at
artificially creating such a relation via the control law [6], [7]

uIi(t) = ω̂i(t)− ωR = −kPi(P
m
i (t)− P di ) (6)

with uIi : R
+
0 → R, i ∈ VI , droop gain kPi ∈ R+, mea-

sured active power Pmi : R+
0 → R and desired active power

setpoint P di ∈ R. This is again a proportional control law, but
now the input signal is the deviation in power (Pmi −P di ) and
the output is the internal inverter frequency ω̂i, the reference
setpoint of which is the rated network frequency ωR. Thus,
from (2) we have uIi = ωi.

III. MODELLING OF AN MDREG
Assuming that a droop-controlled inverter at a node i ∈ VI

is operated in voltage source mode and equipped with some
sort of storage (e.g. flywheel, battery), it can increase and
decrease its power output in a certain range. Then, an inverter
with constant voltage amplitude and frequency droop control
(6) can be modelled as [22]

δ̇i(t) = uIi(t) = −kPi
(Pmi (t)− P di ),

τPi
Ṗmi (t) = −Pmi (t) + Pi(t), (7)

where τPi
∈ R+ is the time constant of the low pass filter of

the power measurement [7]. Since an inverter may connect
a pure storage device, e.g. a battery, to the network, P di can
also take negative values. In that case, the storage device is
charged in dependency of the excess power available in the
network and thus functions as a frequency dependent load.

For the generator dynamics at a node i ∈ VSG, we con-
sider the classical representation of a regulated synchronous
generator by a constant voltage behind transient reactance
together with the droop control law (5) [5], [21]. We denote
by Mi ∈ R+ the inertia coefficient and by Di ∈ R+ the
damping term. Defining kPi

:= k̃Pi
/(1 + k̃Pi

Di), the reg-
ulated SG dynamics can be represented as

δ̇i(t) = ωi(t),

Miω̇i(t) = −
1

kPi

ωi(t) + P dMi
− Pi(t). (8)

We further associate to each source its power rating
PNi ∈ R+, i ∼ V. To simplify notation the time argument of
all signals is omitted, whenever it is clear from the context,
and we denote kPi , i ∼ V, as droop gains in the sequel.

IV. SYNCHRONIZATION AND POWER SHARING IN AN
MDREG

We start our analysis by comparing the dynamics of
a regulated SG and a frequency droop-controlled inverter,
leading to the following observation.

Lemma 4.1: The dynamics of a frequency droop-
controlled inverter (7) and a regulated SG (8) are equivalent.

Proof: For i ∈VI , define the ”virtual” inertia coefficient
Mi := τPi/kPi , as well as P dMi

:= P di . Recall that δ̇i = ωi.
Differentiating ωi in (7) with respect to time and using (7)
to substitute Pmi , we can rewrite (7) as

δ̇i = ωi,

Miω̇i = −
1

kPi

ωi + P dMi
− Pi. (9)

Remark 4.2: It follows from Lemma 4.1 that if one main
control design intention for an inverter operated in voltage
source mode is to achieve a behavior with respect to fre-
quency similar to that of an SG, the rather simple structure
given in (7) is sufficient and no additional components are
required. Moreover, (9) reveals that the time constants τPi

of the low pass filters can be used as additional design para-
meters to shape the desired ”virtual” inertia coefficients Mi

of the inverters. Methods to emulate additional characteristics
of SGs are proposed, e.g. in [14], [15].

For ease of notation, we are going to use (9) in the sequel
to represent the inverter dynamics. We further define the
matrices and column vectors

M :=diag(Mi){i∼V}, K := diag(1/kPi
){i∼V},

P dM :=col(P dMi
){i∼V}, P := col(Pi){i∼V} (10)

with power flows Pi given in (4). Then, the MDREG with
node dynamics as in (8), (9) can be written compactly as

δ̇(t) = ω(t),

Mω̇(t) = −Kω(t) + P dM − P (t). (11)
To state our main result, we need the following assumption
on existence of a synchronized trajectory of system (11).

Assumption 4.3: There exist constants δs ∈ Σ and
ωs ∈ R+ such that the system (11) possesses a synchronized
solution

δ∗(t) = mod2π{δs + 1nω
st}, ω∗(t) = 1nω

s (12)
for all t ≥ 0, where the index set I is defined in II-A and
Σ :=

{
δs ∈ Tn

∣∣− π
2 < δsik + φik<

π
2 for all pairs (i, k) ∈ I

}
.



Remark 4.4: The power flows P in (10) are invariant to a
uniform shift of all angles. Consequently, δ∗ is only unique
up to such a shift. To keep notation reasonably simple we
will omit this non-uniqueness in the sequel.

A. Frequency synchronization in a lossy MDREG
A related work is [23], where under the assumption

of small inertia over damping ratios, synchronization con-
ditions for a nonlinear lossy power system with purely
SGs have been derived. The microgrid (11) is very simi-
lar to the model used in [23]. The authors of [23] ob-
tain their results via a singular perturbation approach that
leads to reduced first-order dynamics of (11). For the
model (11), the perturbation assumption of [23] reads
ε := max

(
maxi∼VI τPi ,maxi∼VSG

MikPi

)
� 1.

Another assumption sometimes used in analysis of lossy
power systems is uniform damping [16]. In our notation
this assumption reads τPi

= τPk
= . . . =MlkPl

=MmkPm
,

i, k ∼ VI , l,m ∼ VSG. None of the two assumptions is valid
for generic lossy power systems, see [23] and discussion
therein. Since in the present case τPi

and kPi
represent free

design parameters, we can enforce the latter assumption for
the synchronization analysis of a lossy MDREG. Further, we
work with the local approximation of the full second order
model (11) in the sequel. Then, we can use ideas from second
order consensus theory to provide a necessary and sufficient
condition for the droop gains kPi

, i ∼ V and low pass filter
time constants τPi , i ∼ VI under which the synchronized
solution defined in Assumption 4.3 is locally stable.

Assumption 4.5: The parameters τPi
, τPk

, i, k ∼ VI ,
and k̃Pl

, k̃Pm , l,m ∼ VSG are selected such that
τP = τPi

= τPk
= . . . =MlkPl

=MmkPm
.

Remark 4.6: The droop gains of the inverters kPi
, i ∼ VI

are not restricted by Assumption 4.5.
Given a graph G = (V, E , w) induced by the microgrid,

let C be its orientation matrix, Q its incidence matrix and
W its diagonal matrix of edge weights, cf. II-A. The lth
row of Q corresponds to the lth edge in E , l ∈ {1, . . . , |E|}
given by (i, k), i, k ∈ {1, . . . , n}. It represents the linearized
synchronized power flow P sik from node i to k as given
in (3). Here, i is the initial node, k the final node and
Wll = w(i, k) = EiEk|Yik| cos(δsik + φik) the edge weight.

Linearizing the vector of power flows P in (10) around a
synchronized state with phase angle vector δs, we obtain

∂P

∂δ

∣∣∣
δs

:= L = CWQ. (13)

It is easily verified that under Assumption 4.3 it holds that
Wll > 0, ∀l = 1, . . . , |E|. Consequently, L is then a (non-
symmetric) Laplacian matrix.

We define the deviations of the system variables with
respect to the synchronized solution (12) as

ω̃(t) := ω(t)− 1nω
s ∈ Rn,

δ̃(t) := δ(0)− δs +
∫ t

0

ω̃(τ)dτ ∈ Rn. (14)

Then, under Assumption 4.5, the microgrid dynamics (11)
can locally be modelled as a second order consensus system[

˙̃
δ(t)
˙̃ω(t)

]
=

[
0n×n In×n
−M−1L − 1

τP
In×n

]
︸ ︷︷ ︸

:=T

[
δ̃(t)
ω̃(t)

]
. (15)

We are now ready to state our main result.
Proposition 4.7: Consider the system (11) satisfying As-

sumptions 4.3 and 4.5. Let µi = ai + jbi be the ith eigen-
value of M−1L, i = 1, . . . , n. Then, the MDREG (11)
achieves synchronization in a neighbourhood of (12) if and
only if for all i with ai 6= 0 and bi 6= 0

τ2P <
ai
b2i
. (16)

Moreover, if M−1L has only real eigenvalues µi = ai,
i = 1, . . . , n, the MDREG (11) achieves synchronization in
a neighbourhood of (12) for any τP .

Proof: We have just shown that with our assumptions,
the microgrid (11) is locally equivalent to the system (15).
The proof is thus given for system (15). It has been shown in
[12] that limt→∞ ω̃i(t) = 0 and limt→∞ |δ̃i(t)− δ̃k(t)| = 0,
for i, k = 1, . . . , n iff T has exactly one zero eigenvalue and
all the other eigenvalues of T have negative real parts. We
will thus prove Proposition 4.7 by deriving the spectrum of
T . The eigenvalues of T are the roots of

det(λI2n − T ) = det(P (λ)), (17)
where P (λ) = λ2In + τ−1P λIn +M−1L. For any v ∈ Cn
with v∗v = 1, we have

v∗P (λ)v = λ2 + τ−1P λ+ v∗M−1Lv. (18)
Now, choose v = vi, where vi is a right eigenvector of
M−1L, i.e. M−1Lvi = µivi, with µi ∈ C, i = 1, . . . , n
being the eigenvalues of M−1L. Then, (18) becomes

v∗i P (λ)vi = λ2 + τ−1P λ+ µi = 0 (19)
and the eigenvalues of T are the solutions λi1,2 of

λ2i + τ−1P λi + µi = 0, i = 1, . . . , n. (20)
As M is diagonal, M−1L is a Laplacian for δs ∈ Σ

and has exactly one zero eigenvalue, since G is strongly
connected by assumption. We let µ1 = 0. All the other
eigenvalues µi, i = 2, . . . , n have positive real parts.

For µ1 = 0, (20) has solutions λ11 = 0, λ12 = −1/τP . It
remains to show that all solutions λi1,2 , i = 2, . . . , n of (20)
have negative real parts. First, consider real nonzero eigen-
values, i.e. µi = ai with ai > 0. Then, clearly, both solutions
of (20) have negative real parts, e.g. by the Hurwitz condi-
tion. Next, consider complex eigenvalues, i.e. µi = ai + jbi,
ai > 0, bi ∈ R \ {0}. Then, from (20) we have

λi1,2 =
1

2τP

(
−1±

√
1− 4τ2P (ai + jbi)

)
. (21)

We define αi := 1 − 4aiτ
2
P , βi := −4biτ2P and recall that

the roots of a complex number
√
αi + jβi, βi 6= 0 are given

by ±(ψi + jνi) [24] with

ψi =

√
1

2

(
αi +

√
α2
i + β2

i

)
. (22)

Thus, both solutions λi1,2 in (21) have negative real parts iff√
1

2

(
αi +

√
α2
i + β2

i

)
< 1⇔

√
α2
i + β2

i < 2−αi. (23)

Inserting αi and βi gives√
(1− 4aiτ2P )

2 + 16b2i τ
4
P < 1 + 4aiτ

2
P , (24)

where the right hand side is positive. The condition is
therefore equivalent to the claimed condition (16).



B. Frequency synchronization in a lossless MDREG

A lossless microgrid with inductive lines and second
order dynamics is obtained from (11) by setting Gik = 0,
respectively φik = 0 for all i, k = 1, . . . , n.

Assumption 4.8: Gik = 0 for all i, k ∈ V.
Under Assumption 4.8, all loads present in the network

are storage devices in charging mode, i.e. P dMi
< 0 for some

i = 1, . . . , n1. The microgrid dynamics (11) can locally be
modelled as the second order consensus system[

˙̃
δ(t)
˙̃ω(t)

]
=

[
0n×n In×n
−M−1L −M−1K

]
︸ ︷︷ ︸

:=R

[
δ̃(t)
ω̃(t)

]
(25)

with L as defined in (13). Local synchronization follows as
a corollary to Proposition 4.7.

Corollary 4.9: Consider the system (11) satisfying As-
sumptions 4.3 and 4.8. Then, the MDREG (11) achieves
synchronization in a neighbourhood of (12) for arbitrary
choices of kPi , i = 1, . . . , n and τPi , i = 1, . . . , n1.

Remark 4.10: We do not need Assumption 4.5 to prove
synchronization in a lossless network, since L is a symmetric
Laplacian matrix if δs ∈ Σ and φik = 0 for all i, k ∈ V.

Proof: To show the corollary, we need to show that
R possesses exactly one zero eigenvalue and that all other
eigenvalues have negative real parts. To see this, observe that
the eigenvalues of R are the roots of det(M−1) det(P ′(λ))
with P ′(λ) = λ2M + λK + L. Recall that M is a
diagonal matrix with positive entries and that under Assump-
tion 4.8 L is a symmetric Laplacian matrix of a strongly
connected graph. Thus, L has exactly one zero eigenvalue
and n− 1 positive real eigenvalues. Further, v∗Lv ≥ 0 for
any vector v ∈ Cn with v∗v = 1. Now, choose v = vi,
where vi, i = 1, . . . , n is a right eigenvector of P ′(λ), i.e.
P ′(λ0)vi = 0, for some eigenvalue λ0 ∈ C. Then
v∗i P

′(λ0)vi = 0 = λ20v
∗
iMvi + λ0v

∗
iKvi + v∗i Lvi (26)

and the solutions λ01,2 of (26) are the eigenvalues of R.
Since v∗iMvi and v∗iKvi are positive real, the result follows
by the Hurwitz condition. Local synchronization of (15) is
concluded by Proposition 4.7.

C. Power sharing

We next show how the droop control laws defined in (5)
and (6) serve to achieve a desired power distribution among
the generation units in a synchronized network state.

Lemma 4.11: Consider the microgrid (11) satisfying As-
sumption 4.3. Then, the generation units share the power in
proportion to their power ratings PNi if the gains kPi

and
setpoints P dMi

are chosen such that for all i, k = 1, . . . , n

kPiP
d
Mi

= kPk
P dMk

and P dMi
/PNi = P dMk

/PNk . (27)

Proof: The proof has been given for first-order droop-
controlled inverters in [8] and carries over in a straightfor-
ward manner to the case of an MDREG with droop control
laws as given in (5) and (6). Under conditions (27), we have
along the synchronized trajectory defined in Assumption 4.3

P si
PNi

=
P dMi
− k−1Pi

ωs

PNi
=
P dMk

− k−1Pk
ωs

PNk
=

P sk
PNk

. (28)

Remark 4.12: Condition (28) holds for arbitrary line ad-
mittances. Hence, the MDREG (11) achieves proportional
active power sharing in a synchronized state independently
of the power line characteristics. However, in a highly ohmic
network the droop control laws (5), (6) may induce high
fluctuating currents due to the stronger coupling of phase
angles and reactive power. Then, additional methods such as
the virtual output impedance [25] or alternative droops [26]
could be employed.

Remark 4.13: Under Assumption 4.5, proportional power
sharing among generation units can be achieved via
Lemma 4.11 if Mk/Mi = PNk /P

N
i holds for all i, k ∼ VSG.

V. SIMULATION EXAMPLE

To illustrate our theoretical analysis, we provide a simula-
tion example for a lossy MDREG based on the inner ring of
the islanded Subnetwork 1 of the CIGRE benchmark medium
voltage distribution network [17]. The network consists of
eight main buses and is shown in Fig. 1. The loads at
buses 3, 4 and 8 to 11 (indicated by ↓) represent industrial
and household loads. The non-controllable generation units
are composed of photovoltaic plants (PV) at buses 3, 4,
respectively 8 to 11. The four controllable generation sources
are a combined heat and power (CHP) fuel cell (FC) at bus
9b (i = 1), a battery (Bat) at bus 10b (i = 2), a fuel cell
(FC) in a household at bus 10c (i = 3), as well as CHP
diesel plant with SG at bus 9c (i = 4). Besides the diesel
plant all controllable sources are interfaced via AC inverters
to the network. The source numbering is as defined in II-B.

To permit an islanded operation of the system, the power
ratings of the generation units are scaled by a factor 5
compared to [17], such that the controllable sources (CHPs,
battery, FC) can satisfy the load demand in an autonomous
operation mode at least during some period of time. The load
data is as given in [17], besides the load at node 1, which
is neglected. The line parameters and lengths are as given
in [17]. The transformers of the sources are modelled with
RTi = 0.008Pbase/P

N
i pu, XTi = 0.04Pbase/P

N
i pu, i ∈ V ,

where pu denotes per unit values with respect to the common
system base power Pbase given in Table I. We assume for
simplicity that the transformer power rating is equivalent to
that of the corresponding generation source. The output filter
inductances are assumed equal to XFi

= 0.0003 pu, i ∈ VI .
The simulations are carried out in Plecs [27].

We consider the following scenario: all PV units provide
50% of their rated power. The remaining power demand of
the network (0.865 pu) should be supplied by the droop-
controlled sources. The droop gains kPi

and power setpoints
P dMi

, i = 1, . . . , 4 are designed following Lemma 4.11,
i.e. such that the power is shared by the sources according
to their ratings. Moreover,

∑4
i=1 P

d
Mi

= 0.857 pu. Since
additionally the losses over lines are not considered expli-
citly in the selection of P dMi

, the microgrid is expected to
synchronize close, but not exactly at nominal frequency.

Local stability is analyzed via Proposition 4.7. We there-
fore compute the equivalent Kron-reduced network of the
microgrid in Fig. 1. In the present case, M−1L with L
as defined in (13) has only real eigenvalues at the chosen
equilibrium point. Thus, by Proposition 4.7, the microgrid
synchronizes for initial conditions around the desired oper-
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Fig. 1. 20 kV MV benchmark model adapted from [17] with eight main
buses and generation sources of type: PV-Photovoltaic, FC-fuel cell, Bat-
battery, CHP diesel, CHP fuel cell. The symbol ↓ denotes a load and PCC
denotes the point of common coupling to the main grid.

TABLE I
TEST SYSTEM PARAMETERS

Base values Pbase = 3 MW, Vbase = 20 kV
Max. system load 0.99 pu
Total nominal PV gen. 0.25 pu
SG data M4 = 0.6064 pu/Hz2, D4 = 0 pu/Hz
PN
i , i = 1, . . . , 4 [0.353, 0.333, 0.023, 0.517] pu
P d
Mi

, i = 1, . . . , 4 [0.247, 0.233, 0.016, 0.361] pu
kPi

, i = 1, . . . , 4 [0.566, 0.600, 8.571, 0.387] Hz/pu
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Fig. 2. Trajectories of absolute power outputs Pi in pu, power out-
puts relative to source ratings Pi/P

N
i and internal relative frequencies

fi − fd = ωi/(2π) in Hz of the controllable sources in the microgrid given
in Fig. 2. The lines correspond to: FC CHP i = 1 ’- -’, battery i = 2 ’- +’,
FC i = 3 ’-*’, SG diesel CHP i = 4 ’–’.

ating point if Assumption 4.5 holds. Since only one SG is
present in the network, Assumption 4.5 does not represent a
major limitation. This holds especially for the proportional
power sharing among sources. The main system data is given
in Table I. All other system parameters are given in [17].

The simulation results are shown in Fig. 2. After a
transient the frequencies synchronize close to the nomi-
nal frequency and the load of 0.865 pu is shared by the
different sources in proportion to their ratings as derived
in Lemma 4.11. The initial conditions have been chosen
arbitrarily. The generation source i = 3 with smallest power
rating PNi and consequently highest droop gain kPi

(if
designed according to Lemma 4.11) exhibits the largest
internal frequency oscillations during the transient.

VI. CONCLUSION

Microgrids represent a promising near-time concept to
facilitate increasing integration of distributed renewable
sources. Opposed to most previous work, we have considered
the general and practically very relevant case of a microgrid
with mixed distributed rotational and electronic generation.

Furthermore, our analysis has addressed generic (possibly
meshed) lossy networks, i.e. with nonzero transfer conduc-
tances, while treating lossless microgrids as a special case.
We have provided conditions to guarantee local frequency
synchronization and power sharing in such networks, when
the generation units are operated with frequency droop con-
trol. Future research will consider relaxing the assumption on
identical low pass filter time constants, as well as extending
the analysis to time-dependent voltages and reactive power-
voltage droops.
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