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Abstract—Inertial sensor networks on the lower limbs enable
realtime assessment of gait and thus feedback control of active
gait support systems. However, most state-of-the-art methods (1)
require each sensor unit to be attached to a predefined segment
in a predefined orientation, or (2) require the user to perform
precise calibration motions, and (3) require a homogeneous
magnetic field. Such requirements are incompatible with most
clinical applications especially if the patient attaches the sensor
autonomously. We propose methods for a plug-and-play gait
analysis that uses only accelerometer and gyroscope readings.
These methods allow the sensor network to adjust to the
user and to calibrate itself automatically using data from only
five seconds of walking, i.e. the methods are plug-and-play.
In particular, we present a sensor-to-segment pairing method
that identifies which sensor is attached to which body segment
(thigh, shank and foot) of which leg. Analysis of data from
over 500 trials with healthy subjects and Parkinson’s patients
yields a correct-pairing success rate of 99.8%. Additionally, we
present a sensor-to-segment calibration method that determines
the knee joint axis in the local coordinates of each sensor, which
is essential for joint angle calculation. Comparing the resulting
knee joint angles to measurements of an optical motion capture
system yields root-mean-square deviations of about 3◦.

I. INTRODUCTION

Active exoskeletons, FES neuroprostheses and biofeed-
back systems can support patients with walking disabilities
and help them to regain individual mobility, see for ex-
ample [1]–[3]. All of these assistive technologies require
realtime assessment of the patient’s gait. State-of-the-art in-
ertial sensors (inertial measurement units, IMUs) can provide
accurate measurements while overcoming the restrictions
of conventional (i.e. optoelectronic) motion analysis. IMUs
have become so small and lightweight that they are easily
integrated into textiles or worn on the skin.

However, inertial motion analysis is still too restrictive
with regard to its usability in many clinical applications. Each
IMU must be attached to a predefined body segment, and
precisely defined calibration movements must be performed
(see for example [4] and [5]). As Cereatti et. al. [6] recently
pointed out, the common calibration procedures are hardly
applicable in daily life. Therefore, sensor-to-segment pairing
and calibration represent major challenges in IMU-based gait
analysis.

Some recent contributions have demonstrated that sensor-
to-segment calibration can be achieved without the need
for precise calibration movements, see for example [7], [8].
However, prior knowledge is required about which sensor
is attached to which body segment. Especially in clinical
applications, the reliability of inertial gait analysis should
not depend on the user attaching each IMU correctly to its
designated body segment. A number of studies have aimed to
overcome this restriction by proposing methods for on-body
localization of IMUs, for example [9]–[12]. These methods
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result in accuracies of up to 100%. However, they are either
based on learning algorithms that process large offline data
sets or they require the user to perform predefined motions.

In the present contribution, we consider IMUs on the
lower limbs and present a computationally low-cost method
that identifies to which segments the sensors are attached.
The method exploits characteristic features of the inertial
data that is measured during gait, i.e. it does not re-
quire the user to perform any static pose. In addition, we
briefly present a method that identifies the sensor-to-segment
orientation while the subject walks. The combination of
both methods yields a plug-and-play solution for sensor-to-
segment pairing and calibration of inertial sensor networks
during gait (see Figure 1).
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Figure 1: Plug-and-play sensor-to-segment pairing and cali-
bration: After a few steps, the algorithms determine which
sensor is attached to which leg segment and in which
orientation it is attached. Based on this information, knee
joint angles and gait phases can be determined in realtime.

II. USER-ADAPTIVE REALTIME GAIT ANALYSIS

Throughout this contribution, we consider a setup of one
IMU on the thigh, shank and on the foot for both legs.
Each IMU provides 3D accelerometer readings as well as
3D gyroscope readings at a measurement sample rate of
fs = 50Hz. We assume that it is unknown which sensor is
attached to which body segment (thigh, shank and foot) and
in which orientation the sensors are attached to the segments.
Instead, this information will be automatically determined
from the data measured during walking.

A. Sensor-to-Segment pairing

We aim to develop an easy-to-implement and computa-
tionally low-cost method that processes the realtime mea-
surement data of an inertial sensor network to find out
which sensor is attached to which body segment (thighs,
shanks, and feet of both legs). Since we have no prior knowl-
edge about the sensor-to-segment orientations, the method
should only use the Euclidean norms of the measured three-
dimensional accelerations and angular rates. To minimize the
influence of signal fluctuation, we always apply sufficient
low-pass filtering to these measurement signals. Furthermore,
we want to use only relative comparisons of characteristic
signal values, since absolute values and thresholds typically
change with gait velocity as well as from subject to subject.
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Figure 2: (a) Low-pass-filtered angular rates for one foot sensor and both shank sensors. Green dots indicate when the
angular rate of the foot rises/falls above/below the all-time maximum angular rate (horizontal line) of both shank sensors.
These events define the beginning and the end of the approximate swing phase (vertical lines). Integrating the signals over
this time interval allows evaluation of Feature 3. (b) Low-pass-filtered zero-mean jerk of both thigh sensors. The integration
interval that is used for evaluation of Feature 4 is shifted by 70% of T≈swing as indicated by the green arrow.

In order to find robust criteria for sensor-to-segment
pairing, we analyzed a large number of characteristics and
features in the signals recorded during gait. For the sake of
brevity, we only present the most useful and robust features
in the present contribution. The proposed sensor-to-segment
pairing algorithm consists of four consecutive steps:

• Identification of the foot sensors

• Identification of the shank and thigh sensors

• Pairing of the shank sensors to their related foot
sensors

• Pairing of the thigh sensors to their related foot
sensors

Each of these identification steps is based on a few seconds
of data recorded during walking. For the first step, i.e. finding
out which sensors are attached to the feet, we propose the
following simple criterion:

Feature 1: Foot sensors have the highest all-time
maximum of low-pass-filtered acceleration.

Here and in the following we use the term all-time to
emphasize that this maximum is determined (for each sensor)
over the entire period of time that is analyzed.

Once the foot sensors are identified, other methods can be
employed to obtain realtime information on the current gait
phase and orientation of both feet (see for example [13] or
[15] and [14]). We continue the sensor-to-segment pairing
by distinguishing between the thigh and shank sensors, as
follows:

Feature 2: Shank sensors have higher all-time
maximum of low-pass-filtered angular rates than
thigh sensors.

At this stage, we already classified each sensor as being
related to a certain body segment, but we still need to
determine on which leg each sensor is located. Without prior
knowledge, we have no means to distinguish both legs in
terms of left and right. Therefore, we let the two foot sensors
represent one leg each. Consequently, we must find out which
shank and thigh sensor belongs to which of the two foot
sensors, in the following.

This goal is achieved by exploiting some fundamental
characteristics of gait: In general, gait means that both legs
alternate between stance and swing. During swing, both the

shank and the foot of the swinging leg rotate quickly. Let us
approximate the swing phase of one leg by the period of time
in which the angular rate of the foot sensor is higher than
the all-time maximum angular rate of both shank sensors.
We denote the duration of this time interval T≈swing .

Feature 3: During swing phase of one leg, the
shank sensor of that leg measures a higher low-
pass-filtered angular rate than the other shank
sensor.

To evaluate this feature, we compare the integrals over
T≈swing for the angular rates of both shank sensors, as
illustrated in Figure 2(a).

The final step toward the complete sensor-to-segment
pairing is to pair a thigh sensor to its related foot sensor.
For this purpose, the zero-mean jerk, i.e. the time derivative
of the acceleration signal, was found to be a useful signal.
Just like the angular rates for foot and shank sensors, the
jerk of the thigh sensors alternates between high phases and
low phases. These high-thigh-jerk phases appear a little later
than (approximated) swing phases of the corresponding foot.
We quantify this time-shift to be approximately 70% of the
swing duration T≈swing.

Feature 4: Near the end of the swing phase of
one leg, the thigh sensor of that leg measures a
higher low-pass-filtered zero-mean jerk than the
other thigh sensor.

The evaluation of this feature is illustrated in Figure 2(b).
Note that the time shift of the integration interval is not
absolute, but relative to T≈swing and therefore, adaptive to
different walking velocities.

Once we identified the body segment that each sensor is
attached to, we can start the sensor-to-segment calibration
for the shank and thigh sensors.

B. Sensor-to-Segment calibration

Recall that the orientations in which the sensors are
attached to their segments are typically unknown. Thus, in
order to calculate knee joint angles, we must first identify
the knee joint axis coordinates in the local frames of the
thigh and shank sensors [8]. It is important to note that
these coordinates do not change in time, since the sensors
are (almost) rigidly connected to the segments. As pointed
out before, the axis coordinates are typically determined by
means of precisely defined calibration movements, which
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are difficult or impossible to perform for most patients
with motion impairments. Therefore, we choose a different
approach: We exploit the kinematic constraints of joints
to achieve sensor-to-segment calibration from measurement
data of arbitrary motions, as originally explained in [7].

The method that is presented here is an adaptation of
a method that has previously been described for estimation
of knee flexion and ankle dorsiflexion angles [8]. In that
previous work, the sensor-to-segment calibration was found
to be more influenced by relative motions between the skin
that the sensor is attached to and the bones that confine
the joint angle. These soft-tissue effects are typically large
during toe-off and initial contact [8]. That makes it difficult
to identify sensor-to-segment orientations from data that was
recorded during walking. A careful analysis of recorded
data led to the conclusion that the aforementioned relative
motion is strongly related to the sensor rotating around the
longitudinal axis of the segment. In the following, this finding
is exploited to achieve sensor-to-segment calibration based
on walking data.

Without loss of generality, consider only one leg from
now on. We approximate the longitudinal axis of each
segment by averaging the measured acceleration over one
second during gait. We then implement a filter that rejects
measurements from sample instants during which

• the Euclidean norms of the measured angular rates
are below some small threshold or

• the thigh sensor was rotating primarily around the
longitudinal axis of the thigh or

• the shank sensor was rotating primarily around the
longitudinal axis of the shank,

where the last two criteria are evaluated by setting a threshold
on the scalar product of the (normalized) current gyroscope
reading and the approximated longitudinal axis of each
segment.

The measured angular rates gthigh(t) ∈ R3 and gshank(t) ∈
R3 that pass this filter are stored in buffers Gshank and Gthigh.
As soon as the buffers Gshank and Gthigh each contain at
least ten elements, we start a Gauß-Newton optimization
procedure in order to find the unit-length axis coordinates
jthigh ∈ R3 and jshank ∈ R3 that minimize (in a least
squares sense) the left-hand side of the kinematic constraint
of angular rates of hinge joints [7]

‖gshank(t)× jshank‖2 − ‖gthigh(t)× jthigh‖2 = 0 ∀t, (1)

for all samples in Gshank and Gthigh. After three Gauß-Newton
steps, we obtain optimized axis coordinates, which then serve
as starting points for the next optimization that is started
as soon as more measurement samples have passed the
aforementioned filter and were added to Gshank and Gthigh.
This procedure repeats until Gshank and Gthigh both contain
at least 30 elements. At a sampling rate of fs = 50Hz, this is
typically achieved after approximately three to five seconds
of walking.

Note that the relatively small number of 30 samples
in this optimization problem is a large benefit in terms of
computational cost and allows realtime implementations even
on computationally low-potent systems. Note furthermore
that the method exploits a kinematic constraint that becomes
manifest in any arbitrary motion of the joint [7], i.e. it does
not depend on the user walking in a certain (physiological)
manner or at a certain velocity.
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Figure 3: Sensor-to-segment pairing and calibration are
completed in less than five seconds. After the calibration,
knee joint angles are determined, which coincide well with
measurements of an optical reference system.

Please note that the sensor-to-segment pairing has to be
completed before the sensor-to-segment calibration can start,
but in order to minimize the required time for the complete
calibration procedure, the sensor-to-segment calibration uses
also the data gathered during the sensor-to-segment pairing.
Due to this, the entire sensor-to-segment pairing and calibra-
tion takes only about three to five seconds, as illustrated in
Figure 3.

III. EXPERIMENTAL EVALUATION

In order to determine the reliability of the proposed
sensor-to-segment pairing as well as calibration, we eval-
uated the data of three different experiments with several
subjects and walking-trials. In all trials, the subjects were
equipped with the proposed setup of six IMUs on the lower
limbs. All subjects walked on a straight line at either slow,
medium (self-selected) or fast pace.

We analyzed 85 walking-trials of five healthy subjects,
395 trials of eleven healthy barefoot walking subjects, who
each walked at slow, normal and fast pace, and 53 trials of
six ambulatory elderly patients suffering from Parkinson’s
disease, who walked at self assessed speed and partially with
walking frame. In the last experiment the attachment position
of the right thigh sensor was varied between lateral, lateral
low and frontal position. In addition, reference measurements
for the knee joint angles were obtained from a marker-based
optoelectronic motion capture system.

TABLE I: Success rate of the sensor-to-segment pairing

16 subjects 6 patients
speed slow medium fast self assessed
trials 132 216 132 53
pairing 99.2% 100% 100% 100%

Table I presents the results of the sensor-to-segment
pairings. Please note that only a correct classification of all

TABLE II: Influence of thigh sensor placement

lateral low

frontal

lateral

(view from anterior)

sensor pairing knee angle
position success accuracy
lateral 99.7% 3.2◦ ± 1.7◦

frontal 99.5% 3.9◦ ± 2.2◦

lateral low 100.0% 3.0◦ ± 1.6◦

average 99.7% 3.4◦ ± 1.8◦
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six sensors was counted as a successful trial. A classification
rate of 532 out of 533 trials is achieved for all subjects
including fast and slow walkers as well as barefoot and shoe
walkers and even Parkinson patients with walking frames.

In Table II we see the results of the sensor-to-segment
pairing and the joint angle comparison for different thigh
sensor positions. While the left thigh sensor is always at-
tached to the lateral position, three positions (lateral, lateral
low and frontal) are considered for the right thigh sensor.
Even for the two asymmetric mountings, the classification
rate remains very close to 100%.

To evaluate the reliability of the sensor-to-segment cal-
ibration, the knee-joint-axis coordinates with respect to
each local sensor frame are estimated visually from sen-
sor setup photos of each subject of the barefoot-walking
trials. Although this method is certainly quite imprecise,
the comparison of the photo-estimated axis coordinates to
the results of the calibration method allows us to check for
large deviations and unreasonable identification results. On
average, this comparison yields disagreements of 18◦ ± 7◦.
Since the photo-based estimation procedure was found to
have intra-rater and inter-rater reliabilities of about 15◦, we
conclude that the results of the automatic sensor-to-segment
calibration are at least reasonable.

A more quantitative but also less direct approach toward
evaluation of the sensor-to-segment calibration is to compare
the knee joint angle measurements, which strongly rely on
the calibration, to the measurements of the optical motion
capture system. To this end, we calculate the root-mean-
square deviations (RMSE) between inertial and optical knee
angle measurements for each time interval during which a
subject was walking through the limited observation volume
of the optoelectronic system.

Table II shows RMSE values for three different thigh
sensor positions. The average disagreement is approximately
3◦. Similar accuracies were achieved by previously proposed
but more restrictive methods (cf. [8] and references therein).
This indicates that the sensor-to-segment calibration leads
to state-of-the-art accuracies [8], although it uses only mea-
surement data from walking rather than dedicated calibration
motions.

IV. CONCLUSIONS

We proposed a set of methods that allow an IMU network
to adjust to the user during gait in a plug-and-play manner.
The experimental evaluation indicates that both the sensor-
to-segment pairing and the sensor-to-segment calibration are
highly reliable under a multitude of different conditions. The
obtained joint angle accuracies of about 3◦ are comparable
to the results that were reported in the literature for methods
with more restrictive protocols including dedicated calibra-
tion movements. In order to obtain the most accurate results,
the thigh sensor should be placed on the lateral side.

We conclude that the proposed methods enhance the
practical usability of IMU-based gait analysis in many
clinical applications. The user can independently attach the
inertial sensors without the need for professional supervision,
and precise realtime measurements are obtained without the
need for restrictive calibration protocols. Since we refrained
from using magnetometer readings, the methods are highly
suitable for indoor environments. Our present and future
work focuses on the development of plug-and-play neuro-
prostheses that use the measurement signals of the user-
adaptive inertial sensor network for feedback control.
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