
Extending Supervisory Controller Synthesis
to Deterministic Pushdown Automata—

Enforcing Controllability Least Restrictively

A.-K. Schmuck ∗∗ S. Schneider ∗ J. Raisch ∗∗,∗∗∗ U. Nestmann ∗

∗Modelle und Theorie Verteilter Systeme, Technische Universität Berlin
∗∗Regelungssysteme, Technische Universität Berlin, Germany

∗∗∗Max-Planck-Institut für Dynamik komplexer technischer Systeme,
Magdeburg, Germany

Abstract: In this paper a step towards the generalization of supervisory control theory to
situations where the specification is modeled by a deterministic pushdown automaton (DPDA)
is provided. In particular, this paper presents an algorithm to calculate the largest controllable
marked sublanguage of a given deterministic context free language (DCFL) by least restrictively
removing controllability problems in a DPDA realization of this DCFL. It also provides
a counterexample which shows that the algorithm by Griffin (2008) intended to solve the
considered problem is not minimally restrictive.

Keywords: Supervisory Control Theory, Supremal Controllable Sublanguage, Minimally
Restrictive Supervisor, Deterministic Context Free Languages, Pushdown Automata

1. INTRODUCTION

Ramadge and Wonham (1984) established supervisory
control theory (SCT) for controller synthesis on formal
languages. Given a plant and a specification, SCT defines
a proper minimally restrictive supervisor as a controller
which generates a closed loop system (i.e., a plant re-
stricted by a controller) that contains as many words
allowed by the plant as possible while respecting the
specification, not preventing uncontrollable events and
always guiding the system to a satisfactory (marking)
state. Wonham and Ramadge (1987) presented an imple-
mentable fixed point algorithm to calculate the desired
marked closed loop language Lclm using finite automaton
representations of the involved languages and therefore
restricting its applicability to regular plant and specifi-
cation languages. This fixed point algorithm iteratively
executes the following on the product automaton of plant
and specification: (i) it removes controllability problems,
i.e., situations where the controller attempts to prevent
uncontrollable events. (ii) It resolves blocking issues, i.e.,
situations where the closed loop cannot reach a marking
state. Obviously, step (i) may generate new blocking issues,
while step (ii) may lead to new controllability problems.
The algorithm terminates iff no more controllability prob-
lems or blocking situations are present.
The class of deterministic context free languages (DCFL)
contains the class of regular languages, and DCFL
can be represented by deterministic pushdown automata
(DPDA). It was shown by Sreenivas (1993) and Masopust
(2012) that step (i) of the fixed point algorithm to calculate
Lclm cannot be realized for the case where both the plant
and the specification language are DCFL. However, this is
possible for the case where only the specification language

? This work was partially supported by the HYCON2 Network of
excellence (FP7 ICT 257462).

is generalized to DCFL. The resulting generalized super-
visory control problem is practically relevant, as it allows
to consider a broader class of specifications.
The main contribution of this paper is an algorithm which
realizes step (i) for DPDA. Step (ii) is discussed by Schnei-
der and Nestmann (2014). Soundness issues involving the
overall iteration, including the existence of a unique fixed
point, are discussed in a companion paper by Schneider,
Schmuck, Raisch, and Nestmann (2014). Griffin (2008)
suggested an algorithm for the more restrictive setting of a
prefix closed regular plant and a prefix closed deterministic
context free specification language. However, as shown by
the counterexample in Appendix A, Griffin’s algorithm
does not construct the minimally restrictive supervisor.
The paper is structured as follows. After introducing all
required notation in Section 2, we summarize the necessary
parts of SCT in Section 3. In Section 4, we present an
algorithm working on DPDA, realizing step (i) of the fixed
point algorithm to calculate Lclm.

2. PRELIMINARIES

Let Σ be the external alphabet. Then Σ∗ denotes the
set of all finite-length strings over symbols from Σ. Fur-
thermore, we use the abbreviations Σ+ = Σ∗ \ {λ} and
Σ≤1 = Σ ∪ {λ}, where λ is the empty string. Throughout
this paper, we denote elements of the set Σ≤1 by σ, i.e., σ
can also be the empty string. We denote the projection
of a tuple or string a on its ith element by πi(a) and
the concatenation of two strings w,w′ ∈ Σ∗ by w·w′,
meaning that w′ is appended to w. The prefix relations on
strings are defined by w v w′ if 1 ∃w′′ ∈ Σ∗ . w·w′′ = w′

and by w @ w′ if ∃w′′ ∈ Σ+ . w·w′′ = w′. Any subset of

1 Throughout this paper we use the notation ”∀ · . ·”, meaning that
all statements after the dot hold for all variables in front of the dot.
”∃ · . ·” is interpreted analogously.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 286 10.3182/20140514-3-FR-4046.00058

Σ∗ is called a language. The prefix closure of a language
L is defined by L = {w ∈ Σ∗ | ∃w′ ∈ L . w v w′}. A lan-
guage L1 is nonblocking w.r.t. a language L2 iff L1 ⊆ L2.
On an alphabet Σ partitioned into controllable (in the
sense of preventable) and uncontrollable events, i.e.,
Σ = Σc ∪ Σuc, Σc ∩ Σuc = ∅, a prefix-closed language
L1 = L1 is controllable w.r.t. a prefix-closed language L2 =
L2 iff (L1·Σuc) ∩ L2 ⊆ L1. In particular, a word w ∈ L1 is
controllable w.r.t. L2 (written ContW(L1, L2,Σuc, w)) iff

∀µ ∈ Σuc . wµ ∈ L2 → wµ ∈ L1. (1)

A discrete event system (DES) is a tupleD = (Σc,Σuc, Lum,
Lm), where Lum = Lum ⊆ Σ∗ is the prefix closed unmarked
language modeling the step by step evolution of the system
while the marked language Lm ⊆ Lum models only the sat-
isfactory words. Since all DES in this paper evolve on the
same external alphabet Σ = Σc ∪ Σuc, we can characterize
D by its marked and unmarked language only and write
D = Lum, Lm . We say that D is nonblocking, iff Lum is
nonblocking w.r.t. Lm.
A pushdown automaton (PDA) is a tuple

M := (Q,Σ,Γ, δ, q0,2, F)

s.t. (i) the state set Q, the external alphabet Σ, the
stack alphabet Γ, and the set of transitions δ are finite,
(ii) δ ⊆ Q × Σ≤1 × Γ × Γ∗ × Q, (iii) the end-of-stack
marker 2 is contained in Γ, (iv) the set of marking states
F and the initial state q0 are contained in Q and (v) 2 is
never removed from the stack (i.e., (q, σ,2, s, q′) implies 2

∃s′ ∈ Γ∗ . s = s′·2).

Example 1. Consider the external alphabet Σ = {a, b, c, d,
u}, the stack alphabet Γ = {2, •}, the state set Q =
{q0, . . ., q5} and the set of marking states F = {q2, q5}.
Then MO in Figure 1 is a PDA, and the transition
(q, σ, γ, s, q′) ∈ δ is depicted by an edge from q to q′ labeled
by σ, γ, s, denoting that by taking this transition, σ ∈ Σ≤1

is generated, γ ∈ Γ (called “stack-top”) is popped from
the top of the stack, and s ∈ Γ∗ is pushed onto the stack
(with the right-most symbol first). Two transitions with
the same pre and post state are depicted by one edge with
two labels. /

q0 q1 q2 q3 q4 q5

a,2,•2
a,•,••

c,•,•

d,•,•

λ,•,λ
λ,•,λ

λ,2,2

b,•,λ

b,•,λ
b,2,2

u,•,•

Figure 1. PDA MO in Example 1.

Note that M can do silent moves (called λ-transitions),
possibly modifying the stack but not generating an exter-
nal symbol (e.g., see Figure 1, from q1 to q2). We collect
the starting states of all λ-transitions in the set

Qλ(M) := {q ∈ Q | (q, λ, γ, s, q′) ∈ δ}.
A PDA M is livelock free (written M ∈ LLF) iff there
exists no reachable infinite sequence of λ-transitions. Since
livelock free PDA and PDA are equally expressive, we only
consider M ∈ LLF.
From a system theoretic point of view, a system state
would be a pair (q, s), where q ∈ Q and s ∈ Γ∗ represents
the current stack content. Hence, from this point of view, a
PDA with |Q| <∞ has infinite state space since the stack

2 s is always pushed onto the stack with the right-most symbol first.

is not restricted. The pair (q, s) is sometimes referred to
as a configuration. For our purposes, it turns out to be
convenient to add the string of generated external symbols
to this pair. We therefore define the set of configurations
of M = (Q,Σ,Γ, δ, q0,2, F) ∈ PDA by

C(M) := Q× Σ∗ × Γ∗

where (q, w, s) ∈ C(M), consists of a state q, a history
variable w (storing the external symbols generated), and
a stack variable s (storing the current stack content).
The initial configuration is (q0, λ,2). Now observe that a
transition from one configuration to another occurs when
M takes a transition e ∈ δ. To make this step visible we
choose to include the taken transition e into the definition
of a transition from one configuration to another. The
single-step transition relation `M⊆ ((δ ∪ {⊥})× C(M))

2

is therefore defined by

(e, (q, w, γ·s′)) `M (e′, (q′, w·σ, s·s′)) for e′ = (q, σ, γ, s, q′),

where ⊥ denotes an undefined 3 pre-transition.
The set D(M) contains all finite-length 4 derivations
f : N⇀ ((δ ∪ {⊥})× C(M)) s.t.

∀n < max(dom(f)) . f(n) `M f(n+ 1)

with dom(f) being the domain of f . The set DI(M) con-
tains all elements of D(M) starting with the initial element
f(0) = (⊥, (q0, λ,2)). Furthermore, the set Dmax(M,w)
of maximal finite-length derivations of a word w ∈ Σ∗ is
defined by

Dmax(M,w) :={
f ∈ DI(M)

∣∣∣(∃e, q, s . f(max(dom(f))) = (e, (q, w, s))
∧@e′, q′, s′ . (e, (q, w, s)) `M (e′, (q′, w, s′))

)}
.

The set of reachable configurations is defined by

Creach(M) := {c ∈ C(M)|∃d ∈ DI(M), e, n . d(n) = (e, c)} .
Using this definition, we define the marked and the un-
marked languages generated byM = (Q,Σ,Γ, δ, q0,2, F) ∈
PDA by

Lm(M) := {w | (q, w, s) ∈ Creach(M) ∧ q ∈ F} and (2)

Lum(M) := {w | (q, w, s) ∈ Creach(M)}, (3)

respectively. The class of languages generated by PDA is
the class of context free languages (CFL). We say that a
PDA M realizes a DES D = Lum, Lm , iff Lm(M) = Lm

and Lum(M) = Lum and, with some abuse of terminology,
we say D ∈ CFL iff Lum, Lm ∈ CFL.
A PDA M is a deterministic pushdown automaton
(DPDA) (written M ∈ DPDA) iff distinct steps from a
reachable configuration append distinct elements of Σ to
the history variable. Note that this implies that the exis-
tence of an outgoing λ-transition in state q requiring stack-
top γ prevents other outgoing transition in q requiring
stack-top γ. The class of languages generated by DPDA is
the class of deterministic context free languages (DCFL).

Example 2. The PDA MO depicted in Figure 1 is also a
DPDA since all required properties hold. Furthermore, the
marked and unmarked language of MO are given by

Lm(MO) =
{
ac, aac, a2k+1c(bb)l, a2k+2c(bb)l, a2k+3c(bb)lbu,

a2k+2c(bb)lbu, ad, a2kd(bb)l, a2k+1d(bb)l,

a2k+2d(bb)lbu, a2k+1d(bb)lbu
∣∣ k, l ∈ N, k > 0, l ≤ k

}
3 We use the dummy symbol ⊥ to define the initial transition, and,
occasionally, when the pre-transition is irrelevant for the context.
4 since M ∈ LLF

WODES 2014
Cachan, France. May 14-16, 2014

287

and Lum(MO) = Lm(MO), since no blocking situations
occur in MO. This can be verified in Figure 1 (i) by
checking that in every non-marking state q̃ either (a) an
outgoing transition exists for both stack-tops 2 and •, or
(b) the configuration (q̃, ·, γ) is not reachable if no outgoing
transition with stack-top γ exists (e.g., (q1, ·,2) is not
reachable) and (ii) observing that no dead locks or infinite
loops visiting only non-marking states exist. /

A nondeterministic finite automaton (NFA) can be viewed
as a special PDA which does neither have λ-transitions,
nor a stack (see Figure 2). Therefore, we can formally
define a PDA M = (Q,Σ,Γ, δ, q0,2, F) to be an NFA
(written M ∈ NFA) iff whenever (q, σ, γ, s, q′) ∈ δ, then
γ = s = 2 and σ ∈ Σ. Additionally, deterministic finite
automata (DFA) are NFA which are deterministic. The
class of languages generated by DFA is the class of regular
languages (REG) 5 .

Example 3. Consider the input alphabet Σ = {a, b, c, d, u},
the state set Q = {p0, p1, p2, p3}, the set of marking states
F = {p1, p3} and the initial state p0. Then the automaton
MP in Figure 2 is a DFA. The transition (p, σ,2,2, p′) ∈ δ
is depicted by an edge from p to p′ labeled by σ.

p0 p1 p2 p3

a

c, d

b

b

u

Figure 2. DFA MP in Example 3.

The marked and unmarked languages of MP are given by 6

Lm(MP) = {an(c+ d), an(c+ d)(bb)m(bu+ λ) | n,m ∈ N}
and Lum(MP) = Lm(MP), since no blocking situations
occur in MP . /

3. SUPERVISORY CONTROL REVISITED

In the context of SCT, a controller DC = LCum, LCm

is a proper minimally restrictive supervisor for a plant
DP = LPum, LPm and a specificationDS = LSum, LSm ,
if DC (i) is not preventing uncontrollable events (i.e.,
((LPum ∩ LCum)·Σuc) ∩ LPum ⊆ (LPum ∩ LCum)), (ii) gen-
erates a closed loop Dcl = Lclum, Lclm , with Lclum =
LPum ∩ LCum and Lclm = LPm ∩ LCm, which contains as
many words generated by the plant as possible while
respecting the specification, and (iii) always guides the
system to a marking state (i.e., Lclum ⊆ Lclm). In this case
Lclm is the so called marked supremal controllable (non-
blocking) sublanguage of LPm∩LSm (see Wonham and Ra-
madge, 1987). Since different controllers can generate the
same closed loop, there exists no unique minimally restric-
tive supervisor for DP and DS . Obviously, the closed loop
itself is a proper supervisor, giving DC = Lclum, Lclm .
Wonham and Ramadge (1987, Lemma 2.1) introduced the
monotonic operator Ω : Σ∗→Σ∗ defined by

Ω(Lm) = {w∈Lm | ∀w′ v w . ContW(Lm, LPum,Σuc, w
′)}

⊆ Lm. (4)

5 Note that for every language Lum generated by a NFA, there
also exists a DFA generating Lum (see Hopcroft and Ullman, 1979,
p.22). However, this is not true for PDA and DPDA, implying
DCFL ⊂ CFL.
6 The term (x+ y) denotes “x or y”.

By iteratively applying Ω, starting with LSm ∩ LPm, one
obtains Lclm as the (unique) greatest fixed point. Won-
ham and Ramadge (1987, Lemma 2.1) showed that for
LSm, LPm ∈ REG an implementable algorithm working
on DFA to calculate Lclm ∈ REG exists.
Now consider a plant DP = LPum, LPm ∈ REG and
a specification DS = LSum, LSm ∈ DCFL. In this case
we have LSum ∩ LPum, LSm ∩ LPm ∈ DCFL (see
Hopcroft and Ullman, 1979, p.135), realizable by a DPDA.
Now observe the following: in one iteration of the fixed-
point algorithm the language Lm is needed to calcu-
late Ω(Lm). When implementing this algorithm using a
DPDA-realization of the DES D = Lum, Lm , the lan-

guage Lm is (in general) not easily obtained. However,
if D is nonblocking, we can use Lum = Lm. There-
fore, to implement the iterative calculation of Ω, starting
with LSm ∩ LPm ∈ DCFL, one has to iteratively (i) con-
struct a DPDA M ′O from a nonblocking DPDA MO s.t.
Ω(Lm(MO)) = Lm(M ′O) and (ii) make M ′O nonblocking.
The connection between the language characterization of
the supervisory control problem and its automaton based
construction using these two basic subfunctions is inves-
tigated in detail in the companion paper by Schneider,
Schmuck, Raisch, and Nestmann (2014). There, explicit
fixed-point constructions and soundness proofs are given
and it is shown that the resulting controller can be realized
by a DPDA.
We show in the remainder of this paper that there exists
an algorithm working on DPDA which realizes step (i)
and returns a DPDA. An algorithm realizing step (ii) is
presented by Schneider and Nestmann (2014).

Remark 1. The implementable algorithm to calculate
Lclm ∈ REG presented by Wonham and Ramadge (1987,
Lemma 5.1) iteratively calculates the unmarked control-
lable sublanguage of Lum = Lm, i.e.,

Ω(Lum) = {w ∈ Lum | ContW(Lum, LPum,Σuc, w)},

and its nonblocking sublanguage Ω(Lm) ∩ LSm ∩ LPm. In
contrast, the algorithm introduced in the next section
iteratively calculates the marked controllable sublanguage
Ω(Lm) and its prefix closure. /

4. COMPUTABILITY OF Ω FOR DCFL

In this section, using the DFA MP realizing DP =
LPum, LPm , we derive a sequence of automaton manip-

ulations starting with the DPDA MO and generating a
DPDA M ′O s.t. Ω(Lm(MO)) = Lm(M ′O). We assume that
Lm(MO) ⊆ LPm. This is not a restriction of generality, as
Ω is monotonic and its iterative application is initialized
with LPm ∩ LSm. We furthermore assume that MO is

nonblocking, i.e., Lum(MO) ⊆ Lm(MO). If this assumption
does not hold, the algorithm to remove blocking situations
is applied first.
The first task is to find all controllability problems in MO.
Intuitively, a controllability problem occurs when a word
w ∈ Σ∗ is generated by MP and MO reaching states p
and q (by using maximal derivations), respectively, and
MP can generate an uncontrollable symbol µ ∈ Σuc in p
while MO cannot generate this symbol in q. To obtain the
states p and q reached when generating the same word
w ∈ Σ∗, a product automaton is constructed, following,
e.g., Hopcroft and Ullman (1979, p.135).

WODES 2014
Cachan, France. May 14-16, 2014

288

Definition 1. Let MP = (QP ,Σ, {2}, δP , qP0,2, FP) ∈
DFA and MO = (QO,Σ,Γ, δO, qO0,2, FO) ∈ DPDA. Then
the product automaton M× = MP ×MO is defined by
M× = (Q×,Σ,Γ, δ×, q×0,2, F×) with Q× = QP × QO,
q×0 = (qP0, qO0), F× = FP × FO and

δ× =


((p, q), σ, γ, s, (p′, q′)) |(

σ ∈ Σ
∧(q, σ, γ, s, q′) ∈ δO
∧(p, σ,2,2, p′) ∈ δP

)
∨

(
σ = λ
∧p = p′

∧(q, λ, γ, s, q′) ∈ δO

)
 .

/

Lemma 1. Let MP ∈ DFA and MO ∈ DPDA s.t.
Lm(MO) ⊆ Lm(MP) and Lum(MO) ⊆ Lm(MO).
Then (i) Lm(MP ×MO) = Lm(MO), (ii) Lum(MP ×MO) =
Lum(MO), (iii) M× = MP ×MO ∈ DPDA, and (iv) × is
implementable 7 . /

Proof 1. Since M× = MP ×MO is a product automaton
in the usual sense, we have Lm(MP ×MO) = Lm(MP) ∩
Lm(MO) and Lum(MP ×MO) = Lum(MP) ∩ Lum(MO).

Having Lm(MO) ⊆ Lm(MP), Lum(MO) ⊆ Lm(MO) and

Lum(MP) = Lum(MP) implies Lum(MO) ⊆ Lum(MP),
which immediately proves (i) and (ii). (iii) and (iv) follow
from Hopcroft and Ullman (1979, p.135). 2

Example 4. Consider the DPDA MO in Figure 1 and
the DFA MP in Figure 2. It can be easily verified that
Lm(MO) ⊆ Lm(MP), since the state and transition struc-
tures of MO and MP are identical and the usage of
a stack only prevents certain transitions. Furthermore,
Lum(MO) ⊆ Lm(MO) from Example 2. The (accessible
part of the) product automaton M× = MP ×MO is de-
picted in Figure 3 and does obviously generate the same
marked and unmarked language as MO. /

(00) (11) (12) (13) (24) (35)

a,2,•2
a,•,••

c,•,•

d,•,•

λ,•,λ
λ,•,λ

λ,2,2

b,•,λ

b,•,λ
b,2,2

u,•,•

Figure 3. DPDA M× in Example 4, where (ij) := (pi, qj).

Unfortunately, in contrast to the DFA algorithm by Won-
ham and Ramadge (1987, Lemma 5.1), it is not possible
to remove controllability problems in MO in a minimally
restrictive fashion by deleting states or edges in M×. This
is due to the following observations: (i) it is possible that
controllability problems occur in one state for a subset
of possible stack-tops only (e.g., if u ∈ Σuc, M× in Fig-
ure 3 has a controllability problem in (p2, q4) for stack-
top 2, only). Therefore, removing this state may falsely
delete controllable words. (ii) It is generally not possible
to uniquely prevent a certain stack-top symbol in a given
state by removing certain pre-transitions as one incoming
transition can generate more than one stack-top 8 (e.g.,
the transition ((p1, q3), b, •, λ, (p2, q4)) in Figure 3 gener-
ates as stack-top the symbol which is currently in the stack
underneath •). (iii) Controllability problems are not easily
observable in states (p̃, q̃) ∈ Qλ (e.g., (p1, q1), (p1, q2) in
Figure 3) as it is not possible to determine in (p̃, q̃) whether

7 We say an algorithm is implementable if it can be realized by a
computer program.
8 That this is the reason why the algorithm presented by Griffin
(2008) does not give a minimally restrictive controller.

an uncontrollable event µ ∈ Σuc generated by MP in p̃
is also generated by M× after a (finite 9) sequence of λ-
transitions starting in (p̃, q̃). If such a controllability prob-
lem occurs, it will be resolved at the final state (p̃, q̃′) of the
λ-transition sequence. However, observe that (p̃, q̃) ∈ F×
and (p̃, q̃′) /∈ F× implies that the word w̃ ∈ Lm(M×)
with ((p̃, q̃), w̃, s), ((p̃, q̃′), w̃, s′) ∈ Creach(M×) (having a
controllability problem) is not removed from the marked
language by removing (p̃, q̃′) in M×. To remove words
w ∈ Lm(M×) with a controllability problem from the
marked language, we will ensure that only its maximal
derivation f ∈ Dmax(M×, w) ends in a marking state.
We therefore split states and redirect transitions in a par-
ticular way, such that deleting states with a controllability
problem deletes all words w ∈ Lm(M×) (and only those)
having a controllability problem, as required by Ω in (4).
For this purpose we introduce four new state types: regular
(·r) and special (·s) main states

Mr(Q) := {〈q〉r | q ∈ Q}
Ms(Q) := {〈q〉s | q ∈ Q}

and regular (·r) and special (·s) auxiliary states

Ar(Q,Γ) := {〈q, γ〉r | q ∈ Q ∧ γ ∈ Γ}
As(Q,Γ) := {〈q, γ〉s | q ∈ Q ∧ γ ∈ Γ}

where M(Q) = Mr(Q) ∪ Ms(Q) and A(Q,Γ) =
Ar(Q,Γ)∪As(Q,Γ) are the sets of all main and all auxil-
iary states, respectively. Hence, every state is split into two
entities consisting of |Γ| + 1 states each. Using these new
states, we define a function splitting states and redirecting
transitions.

Definition 2. Let M = (Q,Σ,Γ, δ, q0,2, F). Then the
split automaton MSp = SPLIT(M) is defined by MSp =
(QSp,Σ,Γ, δSp, qSp 0,2, FSp) with QSp =M(Q)∪A(Q,Γ),
qSp 0 = 〈q0〉r, FSp = (Ar(F,Γ) ∪ As(Q,Γ))\Qλ(MSp) and

δSp =

{(〈p〉r, λ, γ, γ, 〈p, γ〉r)|p ∈ Q, γ ∈ Γ}
∪{(〈p〉s, λ, γ, γ, 〈p, γ〉s)|p ∈ Q, γ ∈ Γ}

∪
{

(〈p, γ〉r, σ, γ, s, 〈p′〉r)
∣∣∣∣((p, σ, γ, s, p′) ∈ δ
∧(p /∈ F ∨ σ 6= λ)

)}
∪{(〈p, γ〉r, λ, γ, s, 〈p′〉s)|(p, λ, γ, s, p′) ∈ δ ∧ p ∈ F}
∪{(〈p, γ〉s, λ, γ, s, 〈p′〉s)|(p, λ, γ, s, p′) ∈ δ}
∪{(〈p, γ〉s, σ, γ, s, 〈p′〉r)|(p, σ, γ, s, p′) ∈ δ ∧ σ 6= λ}


/

Example 5. Consider the product automaton M× in Ex-
ample 4 depicted in Figure 3. By using the abbreviation in
Figure 4, its split version MSp = SPLIT(M×) is depicted
in Figure 5, where all “obviously useless” entities (i.e.,
main with corresponding auxiliary states that are not
connected by a path (ignoring the labels) to the initial
and a marking state) were removed. /

Intuitively, the newly introduced auxiliary states work
as a stack-top observer, separating outgoing transitions
by their required stack-top, as shown in Example 5.
Therefore, if a controllability problem occurs for one
stack-top, we can delete the respective auxiliary state
without falsely deleting controllable words. Furthermore,
observe that all main states belong to Qλ(MSp) while,
due to determinism, auxiliary states can either belong to

9 As MO ∈ LLF.

WODES 2014
Cachan, France. May 14-16, 2014

289

〈ij〉r
2

•
:= 〈(pi,qj)〉r

〈(pi,qj),2〉r

〈(pi,qj),•〉r

λ,2,2

λ,•,•

Figure 4. Graphical abbreviation
of one entity.

〈00〉r
2

•
〈11〉r

2

•
〈12〉r

2

•
〈13〉r

2

•
〈24〉r

2

•
〈35〉r

2

•

〈12〉s
2

•
〈13〉s

2

•

a,2,•2

a,•,••

c,•,•

d,•,•

λ,•,λ

λ,•,λ

λ,•,λ

λ,2,2

b,•,λ

λ,2,2

b,•,λ

b,•,λ

u,•,•

b,2,2

Figure 5. DPDA MSp in Example 5. Non-accessible states and transitions are dotted. The
uncontrollable state NCS = {〈(p2, q4),2〉r} is indicated in gray.

the set Qλ(MSp) or do not have outgoing λ-transitions
at all. This uniquely defines the subset of states (i.e.,
A(Q,Γ)\Qλ(MSp)) for which controllability can and must
efficiently be tested. Finally, the new special states are
used to ensure that only the states reached by maximal
derivations of words w ∈ Lm(MO) are marking. Observe
that the construction in SPLIT ensures, that final states
of maximal derivations always end in the set A(Q,Γ) \
Qλ(MSp), formally,

∀ w ∈ Lum(MSp), f ∈ Dmax,MSp
(w) .

π1(π2(f(max(dom(f))))) ∈ (A(Q,Γ) \Qλ(MSp)) .
(5)

Therefore, shifting the marking into those states ensures
that uncontrollable words can be removed from the marked
language by removing states in the set A(Q,Γ)\Qλ(MSp).
Before removing states with controllability problems we
show that SPLIT does not change the marked and un-
marked language of its input.

Lemma 2. Let M = (Q,Σ,Γ, δ, q0,2, F) and MSp =
SPLIT(M). Then (i) Lum(MSp) = Lum(M), (ii) Lm(MSp) =
Lm(M), (iii) SPLIT(M) ∈ DPDA, and (iv) SPLIT is
implementable. /

Proof 2. see Appendix B. 2

Technically, we are now ready to delete all states that have
a controllability problem. However, both × and SPLIT
introduce non-accessible states and transitions. Trimming
the automaton MSp prior to the removal of controllability
problems has the advantage that termination of the fixed
point algorithm over Ω can be easily verified, since no
states are removed, if the automaton is trim, nonblocking
and no further controllability problems are present. There-
fore, following Griffin (2006, Thm.4.1), we introduce an
algorithm to remove non-accessible states and transitions
in DPDA. Here, in contrast to DFA, transitions can be
non-accessible even if they connect accessible states, since
the required stack-top might not be available at its pre-
state.

Definition 3. Let M = (Q,Σ,Γ, δ, q0,2, F). Then the
accessible part AC(M) of M is defined by MAc =
(QAc,Σ,Γ, δAc, q0,2, FAc) s.t. QAc = Q \Qna(M), FAc =
F \Qna(M) and δAc = δ \ δna(M), where

Qna(M) := {q ∈ Q \ {q0} | Lm((Q,Σ,Γ, δ, q0,2, {q})) = ∅}

are the non accessible states and

δna(M):=


e = (q, x, γ, s, q′) ∈ δ |

∀ r /∈ Q, δ′ = (δ ∪ {(q, λ, γ, γ, r)}) \ {e} .
Lm((Q ∪ {r},Σ,Γ, δ′, q0,2, {r})) = ∅


are the non accessible transitions. /

Example 6. The accessible part of the automaton MSp in
Example 5, depicted in Figure 5, is obtained by removing
the dotted states, giving MAc = AC(MSp). /

Trimming a DPDA does not change its marked and
unmarked languages.

Lemma 3. Let M = (Q,Σ,Γ, δ, q0,2, F). Then
(i) Lm(AC(M)) = Lm(M), (ii) Lum(AC(M)) = Lum(M),
(iii) AC(M) ∈ DPDA, and (iv) AC is implementable. /

Proof 3. Observe that Qna(M) is the set of states not
reachable by derivations of words w ∈ Lum(M) and
δna(M) is the set of transitions that are not part of
derivations of words w ∈ Lum(M). Therefore removing
these states and transitions does not change the unmarked
language, implying (ii). Since accessible marking states are
preserved, also the marked language (as a subset of the
unmarked language) is left unchanged, implying (i). Since
M ∈ DPDA, (iii) immediately follows as we only remove
states and transitions. (iv) follows, as the emptiness of a
CFL is decidable(see Hopcroft and Ullman, 1979, p.137).

2

As the final step of our algorithm, we will now identify
auxiliary states that have a controllability problem with
respect to the plant, and remove them. This is done in
analogy to the DFA algorithm by Wonham and Ramadge
(1987), while ignoring all states in Qλ.

Definition 4. Let Σuc ⊆ Σ, MP ∈ DFA, MO ∈ DPDA,
M× = MP ×MO = (Q×,Σ,Γ, δ×, q×0,2, F×), and MAc =
AC(SPLIT(M×)) = (QAc,Σ,Γ, δAc, q0,2, FAc).
Then the automaton with removed non-controllable auxil-
iary states is defined by RNCS(MAc) = (QR,Σ,Γ, δR, q0,2,
FR), where QR = QAc \ NCS, FR = FAc \ NCS and
δR = {(q, x, γ, w, q′) ∈ δ′|q, q′ ∈ QR}, where

NCS :=
〈(p, q), γ〉 ∈ ((QAc ∩ A(Q×,Γ)) \Qλ(MAc)) |

∃µ ∈ Σuc .

(
∃p′ . (p, µ,2,2, p′) ∈ δP
∧∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc

)

/

WODES 2014
Cachan, France. May 14-16, 2014

290

Example 7. Consider the accessible split automaton MAc

in Example 6 depicted in Figure 5 and let Σuc = {u}.
Then the set of uncontrollable auxiliary states of MAc

is given by NCS = {〈(p2, q4),2〉r}, indicated in gray in
Figure 5. Removing this state and all ingoing and outgoing
transitions generates the automaton M ′O = RNCS(MAc).
Observe that M ′O has a blocking situation in 〈(p2, q4)〉r
for all words w whose derivations generate stack-top 2 in
〈(p2, q4)〉r, which are w ∈ {a2k+1c(bb)k, a2kd(bb)k | k > 0}.
Note that removing these words (and their extensions)
from Lum(M ′O), i.e., making M ′O nonblocking, requires,
depending on the number of occurrences of a and b in the
past, the restriction of possible future steps. This implies
that the nonblocking version of M ′O has to be structurally
different from MO in a non-obvious manner. This makes
the problem of automatically removing blocking situations
in DPDA challenging. /

As our main result, we now prove that the introduced
sequence of automaton manipulations removes those (and
only those) marked words which have a prefix which is
uncontrollable w.r.t. the plant.

Theorem 1. Let Σ = Σc ∪ Σuc s.t. Σc ∩ Σuc = ∅; MP ∈
DFA and MO ∈ DPDA s.t. Lm(MO) ⊆ Lm(MP) and

Lum(MO) ⊆ Lm(MO). Then

Lm(RNCS(AC(SPLIT(MP ×MO)))) = Ω(Lm(MO)).

/

Proof 4. Using MAc = AC(SPLIT(MP ×MO)) and M ′O =
RNCS(MAc), we have the following observations:
(A) From Lemma 1, 2 and 3, follows that Lum(MAc) =
Lum(MO) and Lm(MAc) = Lm(MO). (B) Pick w ∈
Lum(MO) with ¬ContW(Lum(MO), LPum,Σuc, w). Using
(5) , we can fix fw ∈ Dmax,MAc

(w) and its final state
〈(p, q), γ〉 ∈ ((QAc ∩ A(Q×,Γ)) \Qλ(MAc)). Using Defi-
nition 1 this implies that MP uniquely accepts w in p.
Now (1), (3) and (A) imply that there exists µ ∈ Σuc s.t.
(p, µ,2,2, p′) ∈ δP and ∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc,
giving that 〈(p, q), γ〉 ∈ NCS. (C) It follows from the con-
struction in Definition 2 that there exist derivations gen-
erating w and ending in a main state 〈(p, q)〉 and possibly
also in other preceding states in Qλ(MAc). Observe that
all states reached by generating w, except for 〈(p, q), γ〉,
are in Qλ(MAc) and therefore, by construction, not in
FAc. (D) Definition 4 implies that w ∈ Lum(M ′O) iff there
exists a (possibly non-maximal) derivation f ′ ∈ D(MAc)
with final configuration (r, w, s) s.t. ∀n ∈ dom(f ′), n ≤
max(dom(f ′)) . π2(f ′(n)) /∈ NCS. MAc ∈ DPDA implies
that for all prefixes w′ @ w (but not for w itself) holds that
their maximal derivations are a prefix of f ′. Therefore,
using (B) implies

w ∈ Lum(M ′O) →

(∀w′ @ w . ContW(Lum(MO), LPum,Σuc, w
′))

and

(∀w′ v w . ContW(Lum(MO), LPum,Σuc, w
′)) →

w ∈ Lum(M ′O)

.

(E) Now assume ¬ContW(Lum(MO), LPum,Σuc, w) and
all w′ @ w are controllable. From (B) follows that
〈(p, q), γ〉 ∈ NCS is removed. This has two consequences:
(a) we still have w ∈ Lum(M ′O) from (C),(D), and
(b) if w ∈ Lm(MO) we have w /∈ Lm(M ′O) from (C), (D).

Combining (A), (D) and (E)(b) implies

w ∈ Lm(RNCS(AC(SPLIT(MP ×MO)))) ↔

∀w′ v w . ContW(Lum(MO), LPum,Σuc, w
′),

which proves the statement. 2

Remark 2. Observation (E)(a) in the proof of Theorem 1
is the reason why we do not implement the removal
of all uncontrollable unmarked words, i.e., Ω(Lum(MO)),
used by Wonham and Ramadge (1987) as discussed in
Remark 1. /

5. CONCLUSION

In this paper, we have presented an extension of SCT to
situations, where the plant is realized by a DFA, but the
specification is modeled as a DPDA, i.e., the specification
language is a DCFL. In particular, we have presented
an algorithm consisting of a sequence of automaton ma-
nipulations which, starting with a nonblocking DPDA,
removes all (and only those) marked words having a prefix
which is uncontrollable w.r.t. the plant. This algorithm
was implemented as a plug-in in libFAUDES (2006-2013).
The remaining part of a procedure to obtain a proper
minimally restrictive supervisor, namely an algorithm re-
moving blocking situations in DPDA, is presented by
Schneider and Nestmann (2014). The connection between
a language-theoretic characterization and the automata-
based implementation is investigated in detail in the com-
panion paper by Schneider, Schmuck, Raisch, and Nest-
mann (2014).

Appendix A. COUNTEREXAMPLE

In this section, the algorithm presented in (Griffin, 2008,
p.827) and (Griffin, 2007, p.64) is applied to an example.
It will be shown that this represents a counterexample to
(Griffin, 2008, Theorem 3.5) and (Griffin, 2007, Theorem
5.2.5) since the final DPDA does not realize the supre-
mal controllable sublanguage of the given prefix closed
deterministic context free specification language (which is
required to be a subset of the given prefix closed regular
plant language). Therefore we claim that the problem of
automatically calculating a supremal controllable sublan-
guage of a DCFL was not solved by Griffin (2007, 2008).
The algorithm is initialized with a DFA G and a DPDA
M realizing the plant and the specification, respectively,
s.t. Lm(G) = Lum(G), Lm(M) = Lum(M) and Lm(M) ⊆
Lm(G). Observe that the DFA G and the DPDA M de-
picted in Figure A.1 satisfy these requirements since their
languages are given by

Lm(G) = Lum(G) = {an, anb, anbu|n ∈ N} and

Lm(M) = Lum(M) =

 an, amb, akbu |

n,m, k ∈ N,m>0, k>1

 .

Using these automata, the construction follows seven
steps.

1. Construct M ′, depicted in Figure A.2, by making M
scan its entire input, using the algorithm by Hopcroft
and Ullman (1979, Lem.10.3.).

WODES 2014
Cachan, France. May 14-16, 2014

291

p0 p1 p2

a

b u q0 q1 q2

a,2,•2; a,•,••

b,•,λ u,•,•

Figure A.1. DFA G (left) and DPDA M (right) realizing plant and
specification, respectively.

q0 q1 q2 qd

a,2,•2; a,•,••

b,•,λ u,•,•

b,2,2;u,2,2;u,•,•

Ψ

Φ

Φ

Figure A.2. DPDA M ′, with Ψ = Φ \ u,•,• and Φ = {a,2,2; a,•,•;
b,2,2; b,•,•;u,2,2;u,•,•}.

2. Construct a DPDA M ′′ that accepts the complement
of Lm(M) using the algorithm by Hopcroft and Ullman
(1979), Thm.10.1. Here M ′′ is identical to M ′ in Fig-
ure A.2 but with exchanged non-marking and marking
states, i.e., F ′′ = {qd}.

3. Construct a DPDA M ′′′ that accepts Lc
m(M)∩ Lm(G),

i.e., calculate the cross product of G and M ′′ using the
algorithm by Hopcroft and Ullman (1979), Thm.6.5.

4. Construct M1, depicted in Figure A.3, as the accessible
part of M ′′′, using the algorithm by Griffin (2006),
Thm.4.1.

(00) (11) (22) (1d) (2d)

a,2,•2; a,•,••

b,•,λ u,•,• u,2,2

b,2,2 u,2,2

Figure A.3. DPDA M1, with (ij) := (pi, qj)

5. Construct a predicting machine to observe so called
µ-reverse paths using the algorithm by Hopcroft and
Ullman (1979), p.240. Here, the construction simply
defines an additional stack symbol µγ , ∀γ ∈ Γ s.t.

µγ :={
q ∈ Q1\F1

∣∣∣∣∣∃ q′ ∈ F1, v ∈ Σ∗uc .

(⊥, (q, w, γ·s)) `∗M1
(⊥, (q′, w·v, s′))

}
which denotes the set of unmarked states in M1 from
which a derivation starting with stack-top γ, generating
a sequence of uncontrollable symbols v ∈ Σ∗uc and
reaching a marking state q′ (i.e., a so called µ-reverse
path), exists. For M1, depicted in Figure A.3, this gives
µ2 = {(p1, q1)} and µ• = ∅. The predicting machine
Mµ

1 , depicted in Figure A.4, is then identical to M1

but uses pairs [γ, µγ] as stack.

(00) (11) (22) (1d) (2d)

a,[2,µ2],[•,µ•][2,µ2]
a,[•,µ•],[•,µ•][•,µ•]

b,[•,µ•],λ u,[•,µ•],[•,µ•] u,[2,µ2],[2,µ2]

b,[2,µ2],[2,µ2] u,[2,µ2],[2,µ2]

Figure A.4. DPDA Mµ
1 with µ2 = {(p1, q1)} and µ• = ∅. The set

of µ-reverse paths is depicted in red (dashed) while the set of
edges in δcp is depicted in blue (dotted).

6. Construct M2, depicted in Figure A.5, by deleting all
transitions

δcp :=


(q, σ, γ, γ′·s, q′) ∈ δM |(

(q, σ, γ, [γ′, µγ′]·s, q′) ∈ δMµ
1

∧σ ∈ Σc ∧ q′ ∈ µγ′

)


in M which produce a stack-top in q′ which enables a
µ-reverse path starting in q′. For M and Mµ

1 , depicted
in Figure A.1 and A.4, respectively, observe that e =
((p0, q0), b, [•, µ•], λ, (p1, q1)) ∈ δMµ

1
is the only ingoing

transition to (p1, q1) (where the only µ-reverse path
starts for stack-top 2, since µ2 = {(p1, q1)}) and,
since M1 is trim, eventually leads to the stack-top 2

in (p1, q1). Using the corresponding transition to e in
M , this gives δcp = {(q0, b, •, λ, q1)}. By deleting δcp in
M , we obtain M2, depicted in Figure A.5.

7. Construct M3, depicted in Figure A.6, as the accessible
part of M2, using the algorithm by Griffin (2006),
Thm.4.1. If δcp in step 6 is empty, the algorithm
terminates. Otherwise, the algorithm is restarted with
M = M3.

q0 q1 q2

a,2,•2; a,•,••

u,•,•

Figure A.5. DPDA M2

q0

a,2,•2; a,•,••

Figure A.6. DPDA M3

Obviously, M3 does not have further controllability prob-
lems. Therefore, the algorithm would redo steps 1-6 and
then return M3.
Now observe that the specification language Lm(M) re-
stricts the plant language Lm(G) such that u cannot occur
after exactly one a. This generates a controllability for
the word ab only. Using (4) in Section 3, the supremal
controllable sublanguage of Lm(M) for this example is
given by

Lclm = {w ∈ Lm(M) | ∀w′ v w . w′ 6= ab} (A.1)

= Lm(M) \ {ab}
=
{
an, amb, akbu

∣∣n,m, k ∈ N,m, k > 1
}

implying that Lm(M3) = {an | n ∈ N} is a strict subset of
Lclm which is an obvious contradiction to (Griffin, 2008,
Thm.3.5). Furthermore, Lclm in (A.1) cannot be realized
using the state and transition structure of M and only
deleting existing transitions.
The automatic synthesis of a DPDA realizing Lclm for this
example is provided as an example within our pushdown-
plug-in for libFAUDES (2006-2013).

Appendix B. PROOF OF LEMMA 2

Here we give the proof of Lemma 2.

Proof 2. To simplify notation, we collect all states q,
reachable by a finite sequence of λ-transitions from a
configuration (q̃, w, s̃) with q̃ ∈ F in the set

Qrlt(M,w) :=

q ∈ Q
∣∣∣∣∣∣∣∣
∃ f ∈ DI(M), n ∈ N, q̃ ∈ F .(

f(n) = (ẽ, (q̃, w, s̃))
∧∃n′ > n . f(n′) = (e, (q, w, s))

)
 .

(i) Lum(MSp) = Lum(M): Let q ∈ Q, w ∈ Σ∗, γ ∈ Γ, s ∈
Γ∗ and (q, w, γ·s) be an arbitrary configuration reachable

WODES 2014
Cachan, France. May 14-16, 2014

292

by the initial derivation f ∈ DI(M), implying w ∈
Lum(M). Observe that the state q is mapped to the states
{〈q〉r, 〈q, γ〉r} if q /∈ Qrlt(M,w) and to {〈q〉s, 〈q, γ〉s} if
q ∈ Qrlt(M,w) 10 . Using this, we can show that the single-
step relation

(e, (q, w, γ·s)) `M ((q, σ, γ, s′, q′), (q′, w·σ, s′·s)) (B.1)

is mimicked by a sequence of two single-step relations in
MSp in four different ways
(a) (q /∈ Qrlt(M,w) ∧ (σ 6= λ ∨ q /∈ F)):

(ĕ, (〈q〉r, w, γ·s)) `MSp ((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ·s))

`MSp ((〈q, γ〉r, σ, γ, s′, 〈q′〉r), (〈q′〉r, w·σ, s′·s))

(b) (q ∈ F ∧ σ = λ):

(ĕ, (〈q〉r, w, γ·s)) `MSp ((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ·s))

`MSp ((〈q, γ〉r, σ, γ, s′, 〈q′〉s), (〈q′〉s, w·σ, s′·s))

(c) (q ∈ Qrlt(M,w) ∧ σ = λ):

(ĕ, (〈q〉s, w, γ·s)) `MSp ((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ·s))

`MSp ((〈q, γ〉s, σ, γ, s′, 〈q′〉s), (〈q′〉s, w·σ, s′·s))

(d) (q ∈ Qrlt(M,w) ∧ σ 6= λ):

(ĕ, (〈q〉s, w, γ·s)) `MSp ((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ·s))

`MSp ((〈q, γ〉s, σ, γ, s′, 〈q′〉r), (〈q′〉r, w·σ, s′·s))

Therefore, using induction, we can always construct
a derivation f ′ ∈ DI(MSp), n′ ∈ N s.t. f ′(n′) =
(e′, (q′, w, γ·s)) giving w ∈ Lum(MSp) and therefore,
Lum(MSp) ⊆ Lum(M). Using the fact that the relations
in case (a)-(d) only occur, iff there exists a matching
relation (B.1) in M and derivations in MSp can only be
concatenated iff this is possible in M , the construction
of single-step relations in M matching single-step rela-
tions in MSp gives the same cases as before, implying
Lum(M) ⊆ Lum(MSp).
(ii) Show Lm(MSp) = Lm(M): Let w ∈ Lm(M) and
f ∈ DI(M), n ∈ N, q ∈ F s.t. f(n) = (e, (q, w, γ·s))
is the starting configuration in (B.1). If σ 6= λ in (B.1),
we know from part (i) and cases (a) and (d) that there
exists a derivation f ′ ∈ DI(MSp), n

′ ∈ N s.t. f ′(n′) =
(ĕ, (〈q, γ〉r, w, γ·s)) with 〈q, γ〉r ∈ FSp (since q ∈ F and
〈q, γ〉r /∈ Qλ(MSp)), giving w ∈ Lm(MSp). Now let σ = λ.
Since M ∈ LLF, there exists σ′ 6= λ and a finite chain of
singe-step relations, s.t.

(ĕ, (q, w, γ·s)) `∗M (ẽ, (q̃, w, γ̃·s̃))

`M ((q̃, σ′, γ̃, s̃′, q̃′), (q̃′, w·σ′, s̃′·s̃))
or (B.2)

(ĕ, (q, w, γ·s)) `∗M (ê, (q̂, w, γ̂·ŝ)) 6`M . (B.3)

Then we can combine case (b),(c) and (d) from the proof
of part (i) to mimic (B.2) by the finite chain

(ĕ, (〈q〉, w, γ·s)) `∗MSp
(h̃, (〈q̃, γ̃〉s, w, γ̃·s̃))

`MSp
((〈q̃, γ̃〉s, σ′, γ̃, s̃′, 〈q̃′〉r), (〈q̃′〉r, wσ′, s̃′·s̃))

and (B.3) by the finite chain

(⊥, (〈q〉, w, γ·s)) `∗MSp
(ĥ, (〈q̂, γ̂〉s, w, γ̂·ŝ)) 6`MSp

.

10Observe that reaching q with a different initial derivation f ′ might
result in a different mapping. E.g., the state (p1, q2) in Figure 3 is
mapped to {〈(p1, q2)〉r, 〈(p1, q2), •〉r} and {〈(p1, q2)〉s, 〈(p1, q2),2〉s}
when reached by an initial derivation generating the words w = ad
and w = ac, respectively.

Now observe that all states in As(Q,Γ) ∩ Qλ(QSp) can
only have outgoing λ-transitions, due to the determin-
ism of Q that is preserved in QSp. Therefore, we have
〈q̃, γ̃〉s, 〈q̂, γ̂〉s 6∈ Qλ(MSp) and therefore 〈q̃, γ̃〉s, 〈q̂, γ̂〉s ∈
FSp by definition. This implies that there exists a deriva-
tion f ′ ∈ DI(MSp), n

′′ ∈ N s.t. f ′(n′) = (h, (p, w, r)) s.t.
p ∈ FSp, implying w ∈ Lm(MSp) and therefore Lm(M) ⊆
Lm(SPLIT(M)). For the proof of Lm(SPLIT(M)) ⊆
Lm(M) observe that if w is accepted by a state 〈q, γ〉r ∈
FSp, it follows from (i) and the construction of FSp that
w is accepted by q ∈ F in M . Now let w be accepted
by a state 〈q, γ〉s ∈ FSp. Then it follows from case (b) in
the proof of (i) that there exists some state p ∈ F that
accepts w, since otherwise, 〈q, γ〉s ∈ FSp is not reachable
by w. This again gives w ∈ Lm(M).
Since we only split states, redirect existing transitions and
add unique λ-transitions, (iii) and (iv) follow immediately
from the construction. 2

REFERENCES

Griffin, C. (2006). A note on deciding controllability in
pushdown systems. IEEE Transactions on Automatic
Control, 51(2), 334 – 337.

Griffin, C. (2008). A note on the properties of the supremal
controllable sublanguage in pushdown systems. IEEE
Transactions on Automatic Control, 53(3), 826 –829.

Griffin, C. (2007). Decidability and optimality in push-
down control systems: A new approach to discrete event
control. Ph.D. thesis, The Pensylvania State University.

Hopcroft, J.E. and Ullman, J.D. (1979). Introduc-
tion to Automata Theory, languages and computation.
Addison-Wesley Publishing company.

libFAUDES (2006-2013). Software library for dis-
crete event systems. URL http://www.rt.eei.
uni-erlangen.de/FGdes/faudes.

Masopust, T. (2012). A note on controllability of deter-
ministic context-free systems. Automatica, 48(8), 1934–
1937.

Ramadge, P. and Wonham, W. (1984). Supervisory control
of a class of discrete event processes. In A. Bensoussan
and J. Lions (eds.), Analysis and Optimization of Sys-
tems, volume 63 of Lecture Notes in Control and Infor-
mation Sciences, 475–498. Springer Berlin Heidelberg.

Schneider, S. and Nestmann, U. (2014). Enforcing op-
erational properties including blockfreeness for deter-
ministic pushdown automata. http://arxiv.org/abs/
1403.5081.

Schneider, S., Schmuck, A.-K., Raisch, J., and Nestmann,
U. (2014). Reducing an operational supervisory control
problem by decomposition for deterministic pushdown
automata. Proceedings of the 12th IFAC - IEEE Inter-
national Workshop on Discrete Event Systems.

Sreenivas, R.S. (1993). On a weaker notion of control-
lability of a language k with respect to a language l.
Automatic Control, IEEE Transactions on, 38(9), 1446–
1447.

Wonham, W.M. and Ramadge, P.J. (1987). On the supre-
mal controllable sublanguage of a given language. In
SIAM Journal on Control and Optimization, volume 25,
637–659.

WODES 2014
Cachan, France. May 14-16, 2014

293

