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Abstract: Monotonic convergence of linear iterative learning control (ILC) systems with
changing pass length is considered. The maximum pass length (MPL) error is introduced as
a useful concept for convergence analysis of this class of systems. Using the lifted-system
framework, a both necessary and sufficient monotonic convergence criterion is found for the
1-norm of the MPL error. Further findings on 2-norm and ∞-norm convergence are added.
Finally, an example system is given, i.e. the control of an electrical stimulation system for gait
assistance, and simulation results are provided.
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1. INTRODUCTION

Iterative learning control makes use of the fact that the
performance of a system that executes the same task
multiple times can be improved by learning from previous
executions (trials, iterations, passes) [1]. Therefore it was
found to have great potential for applications with a
naturally repetitive action [2]. However, for ILC theory
to be applicable, certain assumptions must hold:

• the dynamics do not change from pass to pass,
i.e. the same input causes the same output 1

• no input saturation shall occur
• the pass length/trial duration does not change

If this can be assured, then a well-developed theoretical
framework can be applied that is briefly described (for the
linear case) in the following.

1.1 Linear ILC with constant pass length

Due to the need of data storage, discrete-time is considered
the natural domain for ILC analysis [1]. For a causal single-
input single-output system with relative degree m, let

uj = [uj(1−m), uj(2−m), . . . , uj(n−m)]T ∈ R
n,

yj = [yj(1), yj(2), . . . , yj(n)]
T ∈ R

n,

v = [v(1), v(2), . . . , v(n)]T ∈ R
n

be the lifted signal vectors (i.e. the vectors of a finite
number of sequent sample values) of the input signal, of the
output signal, and of an unknown, but iteration-invariant,
disturbance signal, respectively. Furthermore, n ∈ N is the
pass length and j ∈ N0 is the iteration/trial/pass index.
Then the system dynamics shall be given by

yj = P uj + v , (1)

1 This implies that the initial conditions are the same in each pass.

where P ∈ R
n×n is a, in general regular, lower triangular

matrix called the lifted system matrix of the process. (For
a short example, please see Appendix A.) Furthermore,
the error ej = (yd − yj) ∈ R

n is defined with respect
to a desired output yd ∈ R

n, and the control task is to
successively, i.e. from pass to pass, reduce the error (in
some norm) to a small number. This shall be achieved
using the following input update law

uj+1 = Q (uj + Lej ) , (2)

where Q,L ∈ R
n×n need to be designed accordingly. To-

gether with (1) this results in the following error dynamics

ej+1 = PQP−1(In − PL) ej + (In − PQP−1) (yd − v).

From that it is concluded that the error converges to a
finite value 2 e∞ := limj→∞ ej if and only if the spectral
radius ρ(PQP−1(In − PL)) = ρ(Q(In − LP )) is smaller
than one [3]. But this does not eliminate the danger of
large transient growth. Thus instead, it is often demanded
that the largest singular value σ̄(PQP−1(In − PL)) is
smaller than unity, which guarantees (strict) monotonic
convergence (MC) of the Euclidean norm ||ej − e∞||2 [1].
For unknown v, this condition is also necessary, which can
be seen, e.g., by choosing v such that e0 = (yd − Pu0 − v)
points into the direction of maximum gain of (PQP−1(In−
PL)). Also, please note that the MC condition might be
rewritten in any other vector norm and its induced matrix
norm.

1.2 Applications and shortcomings

The outlined algorithm has been modified in many ways
and has been successfully used in a multitude of appli-
cation systems including robotics, process control, and
biological systems (e.g. [6], [4], and many more). Es-
pecially for biomedical systems, learning-type control is

2 Precisely, e∞ = (In−PQP−1(In−PL))−1(In−PQP−1) (yd−v)
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believed to have a dramatic progress in the near future
[5]. Besides using the introduced lifted-system framework,
controller design in the frequency domain is common for
many applications, especially in robotics. Useful additional
properties 3 are found in the z-domain [1], but for this
technique to be applicable, the trial duration must be
magnitudes larger than both the sampling time and the
system’s characteristic time. Apparently, this is not the
case for many ILC applications in biomedical engineering.
In contrast, it is rather often the case that not even the
assumptions made at the beginning of this section can
be assured. Two examples concerning functional electrical
stimulation (FES) shall be presented briefly here:

FES for upper limb movement: A complex functional
arm movement shall be produced via electrical stimulation
of the respective muscles through skin electrodes. For
this purpose, very precise stimulation patterns need to be
applied. However, the system dynamics are hardly known
and depend on many details such as the exact electrode
position. For successive learning of the stimulation pro-
file, the use of a linear ILC algorithm seems promising.
However, at least for the first passes, it is expected that
the arm position leaves the neighborhood of the reference
trajectory very early. The data gathered outside this neigh-
borhood is hardly useful since the dynamics and distur-
bances vary over state space. Therefore, and for reasons
of safety, a trial needs to be terminated whenever output
and reference begin to differ too much. Nevertheless, some
valuable data is gathered that might be used for learning
if there was a way to deal with varying pass lengths.

FES for gait assistance: Stroke patients walking on a
treadmill can be supported, for example, by controlling the
ankle joint angle via electrical stimulation of the tibialis
anterior muscle. Due to the repetitive nature of gait, ILC
was successfully used to learn the stimulation profile for
the swing phase within a small number of steps, see [9].
However, the hip joint and the knee joint are actuated by
the patients themselves. Thus, depending on their strength
and abilities, the steps are usually cut short by suddenly
putting the foot down. Assuming that up to this point the
movement of hip and knee was hardly different from the
movement in a full-length step, the data gathered in these
aborted steps should be used for learning.

Both example applications demonstrate that in many
situations a pass might be terminated early, either by
events that depend on the states of the system or on the
controller performance, or by randomly occurring events.
Typically, this problem is either ignored completely, or a
heuristic approach is used hoping for convergence to be
maintained (see e.g. [9], [8]). But currently there is no ILC
theory that guarantees stability or monotonic convergence
for such variable pass length systems. In this publication,
first results are presented concerning this problem, and
their usefulness for practice is discussed.

2. VARIABLE PASS LENGTH SYSTEMS

A new class of iterative learning systems is introduced and
its convergence properties are analyzed. It is assumed, that
the pass length n can vary from pass to pass and that not
3 For example, the z-domain counterparts of P , L, Q commute.

a single element of the sequence of pass lengths {nj} is
known in advance. However, a possibly very small lower
bound n and a possibly very large upper bound n are
given. Consequently, a full-length desired output yd ∈ R

n

must be defined, and for each pass a full-length input
u ∈ R

n must be available. In order to cope with the
varying length of the output vector and for the sake of a
clearer notation, the remove-last-(n − nj)-rows operator

[·]nj
: R

n → R
nj and the append-(n − nj)-zero-rows

operator [·]n : Rnj → R
n are introduced 4 . Thus, e.g., the

desired output signal for pass length nj becomes [yd]nj
.

2.1 Linear System Dynamics

Consider a causal linear iterative process with bounded
input ûj ∈ R

nj , output ŷj ∈ R
nj and variable pass length

nj ∈ [n, n]. The dynamics of the process can be written in
the lifted-system framework as follows

ŷj = [yj ]nj
= [P uj + v ]nj

, (3)

where uj ∈ R
n and v ∈ R

n are the (bounded) input and
the disturbance, respectively, that would act on the system
if nj was equal to n. Accordingly, yj ∈ R

n is the output for

maximum pass length (MPL), and the MPL error ej ∈ R
n

can be defined as

ej = yd − yj . (4)

Apparently, both the MPL output yj and the MPL error ej
are only theoretical concepts and not measurable signals.
In practice, the j-th pass actually terminates after nj

samples. Thus, only ŷj (but not yj) can be measured and
used for learning. A fairly general input update law is

uj+1 = Q(uj + L [ ŷj − [yd]nj
]n )

= Q(uj + LHnj
ej ) , (5)

where Q,L ∈ R
n×n are the Q-filter and the learning gain

matrix, respectively, and the last (n− nj) samples of ej
are set to zero by multiplication by the block-diagonal
matrix 5 Hnj

= blockdiag{Inj
, 0n−nj

}, with Inj
and 0n−nj

being identity and zero square matrices, respectively.

2.2 Convergence Analysis

Although ej is not a measurable signal, its convergence
properties well describe whether the controller perfor-
mance actually improves. In contrast, the amount of infor-
mation in the measured error ([yd]nj

−ŷj) strongly depends
on the current pass length nj . Furthermore, please note
that if ||ej ||p is monotonically decreasing in j, then also
||[yd]nj

− ŷj ||p is bounded by decreasing upper bounds,
e.g. ||[yd]nj

− ŷj ||p ≤ ||ej ||p ∀j ∀p ∈ {1, 2,∞}. Therefore,
the concept of the MPL error is crucial for convergence
analysis. For a regular system matrix P , the MPL error
dynamics are obtained by combining (3), (4), and (5):

ej+1 = PQP−1(In − PLHnj
) ej

+ (In − PQP−1)(yd − v) (6)

The special case of the Q-filter being identity is considered,
i.e. Q = In. (Note that in this case the second summand
in (6) is zero.) In order to have monotonic convergence

4 Both operators may also be written as multiplication by a matrix
consisting of the unit matrix Inj

and (n− nj) zero columns/rows.
5 By definition, Hnj

a = [[a]nj
]n ∀a ∈ R

n
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(MC) for an arbitrary sequence of pass lengths {nj} and
an arbitrary disturbance signal v, the following condition
must hold:

Lemma 1. (MC for variable pass lengths). For a repeti-
tive process (3) with regular system matrix P and input
update law (5) with Q-Filter Q = In, the monotonic
convergence condition of the MPL error is

||ej+1||p ≤ ||ej ||p ∀ j, {nj}, v

⇔ ||In − PLHn||p ≤ 1 ∀n ∈ [n, n]

for some vector norm || · ||p and its induced matrix norm.

In practice, this would entail the need to calculate the
norm of (n−n+1) matrices of dimension n×n, which is a
large number of large-scale matrices when high sampling
rates are used. Fortunately, simplified conditions can be
found for the 1-norm ||ej ||1 and the ∞-norm 6 ||ej ||∞. To
find and prove the below theorems, the special structure
of the matrices (In − PLHn) is exploited. An example is
provided in Appendix B.

Theorem 1. (MC in 1-norm). Given a repetitive process
(3) with regular P , input update law (5), and with Q =
In, the 1-norm of the MPL error ej is monotonically
decreasing, i.e.

||ej+1||1 ≤ ||ej ||1 ∀ j, {nj}, v ,

if and only if

γ := ||In − PL||1 ≤ 1 . (7)

Proof. Necessity follows from Lemma 1, as (7) repeats
a special case (n = n, p = 1) of the condition therein.
Sufficiency is proved by the following argument, which
holds for every n ∈ [n, n):

(In − PLHn) = (In − PL)Hn + (In −Hn) (8)

Note that the last n−n columns of (In −PL)Hn are zero
and that (In −Hn) = blockdiag{0n, In−n}. Thus, for the
maximum absolute column sum norm || · ||1, we have

||In − PLHn||1 = max(||(In − PL)Hn||1, 1) ≤ max(γ, 1) .

And with Lemma 1, monotonic convergence follows. �

Of course, strict monotonic convergence is desirable. But
even for γ < 1, it turns out that ||In−PLHn||1 = 1 ∀n < n
since the last n−n columns each have absolute sum of one.
To clarify this issue, the following corollary is given:

Corollary 1. If the matrix L satisfies γ = ||In−PL||1 < 1,
then ||ej+1||1 < ||ej ||1 for arbitrary pass length nj ∈ [n, n],
unless the first nj entries of ej are zero. This follows from

||ej+1||1 ≤ ||(In − PL)||1 ·

nj
∑

k=1

|(ej)k|+

n
∑

k=nj+1

|(ej)k|

where k denotes the row index of the MPL error vector.

In practice, that means that the algorithm cannot improve
the last input samples until long enough passes occur.
But it always learns from the first samples and improves
controller performance, even for short pass lengths.

Theorem 2. (MC in ∞-norm). For a repetitive process
(3) with regular P , input update law (5), and with Q = In,
the ∞-norm of the MPL error is MC, i.e.

||ej+1||∞ ≤ ||ej ||∞ ∀ j, {nj}, v ,

6 ||x||1 =
∑n

1
|x(n)| ∀x ∈ R

n and ||x||∞ = maxn |x(n)| ∀x ∈ R
n

if and only if

||In − PL||∞ ≤ 1 ∧ (PL)i,k = 0 ∀k < i ∀i > n , (9)

where i and k are the row and column index, respectively.

Proof. Sufficiency and necessity is proved by the follow-
ing argument, which holds for every n ∈ [n, n):

(In − PLHn) = Hn(In − PL)Hn

− (In −Hn)PLHn + (In −Hn) ,

as HnHn = Hn. Note that the last n − n rows (and
columns) of Hn(In−PL)Hn are zero, that the first n rows
and the last n − n columns of (In − Hn)PLHn are zero,
and that (In − Hn) = blockdiag{0n, In−n}. From that it
follows for the maximum absolute row sum norm || · ||∞:

||In − PLHn||∞ = max(||Hn(In − PL)Hn||∞,

max
i>n

n
∑

k=1

|(PL)i,k|+ 1)

Note that the right-hand side is less than or equal to one
for all n ∈ [n, n] if and only if (9) holds. Combining this
with Lemma 1 completes the proof. �

As for the 1-norm, we find that even if (9) holds with
||In − PL||∞ being strictly less than unity, we still have
||In−PLHn||∞ = 1 for all pass lengths n < n. However, as
a corollary of the above proof, we find for the MPL error:

||ej+1||∞ ≤ max(||Hnj
(In − PL)Hnj

||∞ · max
k∈[1,nj ]

|(ej)k|,

max
k∈(nj ,n]

|(ej)k|) ≤ max
k∈[1,n]

|(ej)k| = ||ej ||∞

And since ||Hnj
(In−PL)Hnj

||∞ ≤ ||In−PL||∞, it is found
that ((9)∧||In−PL||∞ < 1) ⇒ ||ej+1||∞ < ||ej ||∞, unless
(at least one of) the sample(s) with the largest absolute
error, i.e. ||ej ||∞, is among the last (n − nj) samples.
In practice, this means that the controller performance
improves (in the sense of the ∞-norm of the MPL error)
in each pass that is long enough to contain the sample(s)
of largest error.

Please note that both Theorems 1 and 2 imply that only
the maximum pass length matrix (In − PL) and its norm
need to be calculated to check for monotonic convergence.
But in the ∞-norm case, perfect plant inversion 7 is
required, at least in the lower left corner of (PL). Therefore
this criterion is deemed less practical.

Convergence of the 2-norm: No criterion is found for MC
of ||ej ||2 that significantly simplifies the condition given by
Lemma 1. But based on the above criteria for MC of the
MPL error in the 1-norm and the ∞-norm, the dynamic
behavior of ||ej ||2 can be assessed using the well known
facts that ||A||2 ≤ ||A||1 · ||A||∞ ∀A ∈ R

n×n and that
||a||∞ ≤ ||a||2 ≤ ||a||1 ∀ a ∈ R

n. Precisely, the following
properties shall be noted:

• If the MPL error is MC both in the 1-norm and in
the ∞-norm, then it is also MC in the 2-norm.

• If the MPL error converges to zero in any of the three
norms, then so it does in the other two.

• If its 1-norm converges to a small value ε then both
its 2-norm and its ∞-norm converge to or even fall
below ε, with the 1-norm as an upper bound on both.

7 i.e. choosing L such that all off-diagonal elements of (PL) are zero
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Therefore, it is in general sufficient to design a learning
gain matrix L that satisfies the condition (7).

Design of a Q-Filter: In Lemma 1 and in Theorems 1
and 2, the Q-filter has been omitted by choosing Q = In.
This is a reasonable choice since it sets the second sum-
mand in (6) to zero, and therefore reduces steady-state
errors. If a low-pass filter is used instead, which is a
common choice in many applications [1], then convergence
cannot be guaranteed for all sequences of pass lengths {nj}
and disturbances v. Even the deceptively intuitive choice
of a Q-Filter that assures ||PQP−1(In−PLHn)||p ≤ 1 (cf.
(6)) does not necessarily provide this property. However,
simulation results, e.g. those in Section 3, indicate that in
many cases monotonic convergence can be established, at
least for a wide range of {nj} and v. Therefore further re-
search is needed on necessary and sufficient MC conditions
in the case of Q-filtering.

3. CONTROLLER DESIGN AND SIMULATION
RESULTS FOR AN EXAMPLE SYSTEM

The goal of this section is to illustrate some variable
pass length ILC effects and to demonstrate the usefulness
of the criteria found above. For this purpose, controller
design and simulations are carried out for a simple ex-
ample application system that is motivated by a recent
publication by Nahrstaedt et al. [9]. Therein, functional
electrical stimulation of the tibialis anterior muscle is used
to produce a predefined foot movement during the swing
phase of gait (i.e. when the foot moves forward).

3.1 FES System Model

The stimulation intensity, i.e. the pulse width in tenths
of milliseconds, and the ankle joint angle in degrees shall
be the input variable u and the output variable y, re-
spectively. Then the following linear difference equation
model approximates the system dynamics at a sampling
time Ts = 0.02 s (cf. [10]):

y(t) + a1y(t− Ts) + a2y(t− 2Ts) = bu(t− 2Ts), (10)

a1 = −0, 8097002, a2 = −0.0777289, b = 0.6634

Based on experimental data, the duration of swing phase
in the gait of stroke patients is estimated to vary between
0.6 s and 1.0 s, which corresponds to n = 30 and n = 50.
Therefore, the following lifted signal vectors are defined:

uj = [uj(t0 − Ts), uj(t0), . . . , uj(t0 + 48Ts)]
T

yj = [yj(t0 + Ts), yj(t0 + 2Ts), . . . , yj(t0 + 50Ts)]
T

v = [v(t0 + Ts), v(t0 + 2Ts), . . . , v(t0 + 50Ts)]
T

Accordingly, the (lower triangular Toeplitz) lifted system
matrix P is calculated. Based on experimental data, rea-
sonable values for the disturbance signal v and the desired
output yd are generated, and the initial input u0 is chosen
to be a constant pulse width of 0.2ms. (Please refer to
Appendix C for the numerical values of P , v, and yd.)

3.2 Variable Pass Length ILC Design

Each input uj , j > 0 is calculated using the input update
law (5). For controller design, two strategies are employed:

• a diagonal learning gain matrix L1,
with L1(i, i) = l0 on the main diagonal

• a two-parameter learning gain matrix L2,
with L2(i, i) = l1 on the main diagonal,
and L2(i+ 1, i) = l2 just below the diagonal

In the following, both approaches are employed without
and in combination with a Q-filter, while the conver-
gence properties of the MPL error are analyzed using the
findings in Section 2.2. During this design process three
characteristic cases of convergence quality are encountered
successively:

The worst case: At first, the matrix L1 is designed by
gradually increasing l0 (starting from zero) until over-
shoot 8 effects start to appear in the simulated outputs
yj , j ∈ [0, 6]. Although the resulting gain l0 = 0.12 gives
||In−PL1||2 < 1 (i.e. the criterion used in [10]), it is found
by calculation that this is not true for shorter passes, and
that ||In − PL1Hn||p > 1.5 ∀ p ∈ {1,∞} ∀n ∈ [n, n]. With
Lemma 1 it follows that (although it does for the values
defined above) L1 does not do provide MC for all possible
disturbance signals v and sequences {nj}. (Precisely, that
is true for all diagonal gains l0 6= 0.) Therefore this repre-
sents the worst case where for safe use in practice either
additional knowledge on the actual v or {nj} is needed, or
another controller structure must be used.

The best case: Next, the matrix L2 is designed by nu-
merically minimizing ||In − PL2||1 over wide ranges of
both l1 and l2. The use of a second parameter proves
to be very advantageous. For l1 = 1.5, l2 = −1.35 an
approximate plant inversion with a small MPL matrix 1-
norm of γ < 0.13 is gained. Therefore strict monotonic
convergence of ||ej ||1 (for all j, {nj}, v) follows from Corol-
lary 1 without further computational effort. By calculation
ofmaxn||In−PL2Hn||2 ≈ 1.004 it is, moreover, found that
||ej ||2 is not only bounded by ||ej ||1 but also bounded to
rise (if at all) in no pass by more than 0.4%.

A mediocre case: Finally, a zero-phase low-pass filter
(2nd-order Butterworth, cutoff frequency 5Hz, see Ap-
pendix C for numerical values) is used as a Q-filter in com-
bination with both of the designed learning gain matrices.
Thus, monotonic convergence is no longer provable and
convergence of both controllers can only be assessed by
simulation for several values of {nj} and v. In case of the
two-parameter approach this represents a mediocre case
since the simple criterion (7) can be used for the optimiza-
tion of the learning gain matrix, but computationally more
expensive simulations are required after Q-Filter design.

3.3 Simulation results

The lifted system model {P, v, n, n} from Section 3.1 was
simulated with both of the designed controllers {L1, Q, u0}
and {L2, Q, u0} for seven passes with pass lengths of
{nj}

6
j=0 = {34, 40, 30, 46, 50, 50, 37}. Simulation results

are presented in Figures 1 and 2. In the two-parameter
case a core phenomenon of variable pass length learning
becomes apparent: Whenever a pass is long enough to
encounter samples that have not been reached before, the

8 i.e. (yj)k shall be below (yd)k or (y0)k for all samples k ∈ [1, 50],
a practical constraint that avoids too high stimulation intensities
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Fig. 1. Variable pass length ILC with diagonal learning
gain: Starting from a constant input u0 the controller
learns to produce the reference yd better and better.
The end of each pass is marked with a dot. Lines are
continued in dashed style to illustrate the (hypothet-
ical) maximum pass length errors ej = yd − yj .

controller starts to learn this piece of trajectory almost
from scratch, i.e. starting with the according piece of
y0. Due to very fast and accurate learning dynamics the
very next output already resembles the reference (up to
the longest pass length seen so far). In particular the
similarity of y2 and y3 shows that when shorter passes
occur, controller performance is not improved significantly
any more. In contrast, the diagonal controller learns slower
and in a more blurred fashion. But therefore it already
roughly approximates the rightmost reference samples
when long passes occur for the first time, see e.g. samples
40 − 46 of y3. Of course, the advantage that lies in this
phenomenon might turn against the diagonal approach if
either v or yd were changing more rapidly in the region
[n, n]. Nevertheless it might be advantageous for some
applications and thus it is worth trying to achieve this
effect with the faster learning second-(or higher-)order
approaches.

4. CONCLUSION

The theoretical and yet intuitive concept of the MPL
error as the error that the system would undergo if the
pass was of full length proved to be useful for conver-
gence analysis of variable pass length ILC systems. The
criteria found in Section 2.2 can be used both to check

- 1 4

- 1 0

- 6

- 2

2

0 1 0 2 0 3 0 4 0 5 0

0 .0

1 .0

2 .0

3 .0

0 1 0 2 0 3 0 4 0 5 0

Fig. 2. Variable pass length ILC with two-parameter learn-
ing gain: The controller learns to produce the refer-
ence (circle markers) clearly faster than the diagonal
approach in Figure 1. But the output drops shortly to
its initial trace at the end of each pass that is longer
than all previous passes, e.g. at the end of y1 and y3.

monotonic convergence and for controller design itself (as
demonstrated in Section 3), even for time-variant systems.
Further investigations will include MC conditions for the
case of Q-filtering. Research may also aim at simplified
criteria for the 2-norm as well as at monotonic convergence
of nonlinear variable pass length systems. Moreover, it
shall be noted that in the motivational examples in Section
1.2, as in most other biomedical applications, variable pass
lengths are only a subset of the difficulties that complicate
the application of ILC theory. Issues like input saturation
or iteration-variance (in the process dynamics, the initial
conditions, the disturbance, or the reference signal) must
be addressed individually as well as in the context of
variable pass length systems.
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Appendix A. EXAMPLE OF A LIFTED SYSTEM
REPRESENTATION

Consider the special case of a time-invariant, single-input
single-output, state-space system with relative degree one,
output disturbance d ∈ R, and with sampling time Ts:

x(t+ Ts) = Ax(t) +Bu(t), x(t0) = x0 ∈ R
m

y(t) = Cx(t) + d(t)

Assume that we want to control the output y in a time
interval t ∈ [t0+Ts, t0+nTs]. Then we define the following
lifted input and output vectors

u = [u(t0), u(t0 + Ts), . . . , u(t0 + (n− 1)Ts)]
T ,

y = [y(t0 + Ts), y(t0 + 2Ts), . . . , y(t0 + nTs)]
T ,

and using the Markov parameters 9 pk = CAk−1B of
the above state space system, we find the lifted system
representation:

y =









p1 0 · · · 0
p2 p1 · · · 0
...

...
. . .

...
pn pn−1 · · · p1









u +









CAx0 + d(t0 + Ts)
CA2x0 + d(t0 + 2Ts)

...
CAnx0 + d(t0 + nTs)









Please note that the zero-input response v (called distur-
bance signal in Section 1.1 and in most ILC publications)
captures both the disturbance d and the initial condition
dynamics, and that it is exactly the same signal in each
pass. Furthermore, note that the matrix P is Toeplitz and
lower triangular, which is not true for time-varying and
non-causal systems, respectively.
9 i.e. the values of the impulse response, see e.g. [11]

Appendix B. EXAMPLE OF THE MPL ERROR
DYNAMICS MATRICES

Assume that n = 4, n = 2, and that

PL =







a b c d
e f g h
k l m o
p q r s






,

then the MPL error dynamics matrices are given by

(In − PLH4) =







1-a -b -c -d
-e 1-f -g -h
-k -l 1-m -o
-p -q -r 1-s






,

(In − PLH3) =







1-a -b -c 0
-e 1-f -g 0
-k -l 1-m 0
-p -q -r 1






,

(In − PLH2) =







1-a -b 0 0
-e 1-f 0 0
-k -l 1 0
-p -q 0 1






.

For perfect plant inversion, (In − PLH4) would be a zero
matrix, while for L = 0, the MPL error vector does not
change at all.

Appendix C. NUMERICAL VALUES FOR
SIMULATION

The lifted system matrix P ∈ R
50×50 used in Section 3

is Toeplitz and thus completely defined by the values of
its first column. These can be gained from the impulse
response of (10) by omitting the leading zero-values. Pre-
cisely, the first column starts with

P (:, 1) = [0.6634, 0.5371551, 0.4865000, 0.4356716, . . .] .

Further, every fifth entry of reference and disturbance,
respectively, is provided here (to be connected by splines):

yd(1 : 5 : 50) = [−14.767,−13.86,−11.679,−8.6404,

− 5.114825,−1.962725, 0.0655, 1.1659, 1.51685, 0.71465]

v(1 : 5 : 50) = [−14.952,−14.772,−14.692,−14.712,

− 14.832,−15.052,−15.372,−15.792,−16.312,−16.932]

The learning gain matrix L1 is a Toeplitz diagonal matrix
with L1(i, i) = l0 = 0.12 ∀i ∈ [1, 50]. The learning gain
matrix L2 is a Toeplitz matrix with L2(i, i) = 1.5 ∀i ∈
[1, 50] and L2(i+1, i) = −1.35 ∀i ∈ [1, 49]. All other entries
of L2 are zero. The Q-filter is calculated in two steps. First
a Butterworth filter (cutoff frequency of 5Hz) is designed:

Q(z) = (0.067 + 0.135z + 0.067z2)/(0.413− 1.143z + z2)

Then its response to its own time-inverted impulse re-
sponse gives the first row of its lifted representation

Q(1, :) = [0.214255, 0.1898998, 0.1331573, 0.0738052, . . .] .

By this vector the symmetric Toeplitz matrix Q is fully
defined. It represents a forward-and-then-backward filter-
ing with the above filter Q(z) in the lifted-system domain,
and thus attenuates high frequencies without introducing
lag. Exploiting the batch nature of ILC, such zero-phase
filters are used in many application systems, see e.g. [7].
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