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Abstract—Predictive control of blood glucose in critical ill
patients has been investigated. Standard control algorithms
for blood glucose only adjust the insulin infusion rate for
lowering the blood sugar level. Hypoglycaemic situations are
critical is this case since no automatic control action can be
lunched. To avoid hypoglycaemia, controller performance is
usually chosen low what results in large settling times. In
the proposed predictive control scheme, glucose and insulin
infusions are administrated. This allows to track a specified
blood glucose profile exactly. The employed controller is
model-based and tested in computer simulations.

I. INTRODUCTION

Automatic closed-loop control of blood sugar (BS) in

critical ill patients is investigated. A clinical study by

Van den Berghe et. al [1] has shown, that an intensive

insulin therapy reduces the mortality rate in intensive

care units (ICU) significantly. At the moment, in sedated

patients in ICU, medical staff manually controls the blood

glucose levels on behalf of the patient and determines

an appropriate insulin dose. Insulin is usually given by

intravenous bolus or infusion in response to elevated BS

readings. In an intensive insulin therapy, BS levels of

about 5mmol/l instead of the usual 10mmol/l in ICU are

realised by a more tightened BS check and intervention

of the medical staff. However, hypoglycaemic situations

are more likely to occur at an intensified insulin therapy

[1]. Additionally, the workload of the medical staff is

definitively higher for an intensive insulin therapy.

An automatic closed-loop system may help to mitigate

these problems. In a closed-loop feedback system, a blood

glucose sensor measures blood glucose or a surrogate of

it continuously. Recent research has been directed to the

use of minimally invasive and non-invasive methods to

measure BS levels. First closed-loop systems with a sub-

cutaneous electro-enzymatic sensor have been developed

and experimentally tested in ICU [2]–[4].

All known blood glucose control algorithms regulate

only the insulin delivery to the patient via an insulin

pump. The control action, insulin infusion, can only lower

the blood glucose concentration. However, aggressive

control is not possible, since the controller cannot react

on an undershoot of the blood sugar below the reference.

No automatic control action for raising the blood sugar

is available. Thus, hypoglycaemia would be unavoidable.

Closed-loop systems with insulin infusion rate as a single

control variable are therefore tuned to possess a low

bandwidth. Settling times are consequently rather large.

The application of an intravenous glucose infusion

represents a simple method for raising blood sugar levels

in ICU. This article investigates a control system in which

insulin and glucose infusions are administrated for con-

trolling the blood sugar level. Faster settling times of the

closed-loop system and a reduced risk of hypoglycaemic

situations are expected. The control approach has been

validated in simulations using a nonlinear model of the

glucose-insulin system. In Section II the nonlinear model

is described. The design of the used predictive controller

is based on a linear discrete-time transfer function model.

Section III outlines the controller design. Simulation

results are shown in Section IV.

II. NONLINEAR MODEL

The developed controller has been tested in simula-

tions first. A modified minimal model of the insulin-

glucose metabolism proposed by Furler et al. [5] has

been chosen. The model proposed originally consists of

an one-compartment model for the glucose subsystem

and a four-compartment model for the subsystem of

insulin. Two of the four insulin compartments describe

the antibody dynamics and are not considered in this

work. This assumption is justified because the presently

available highly purified insulin preparations are a lot

less immunogenic than those used when Furler et al. [5]

developed their model. The original model was extended

by a term for endogenous insulin secretion [6]. The

equations describing the model are

d x1(t)

d t
= (−P1 − x2(t)) x1(t) + P1G0 +

u1(t)

VG

d x2(t)

d t
= −P2x2(t) + P3 (x3(t) − I0)

d x3(t)

d t
=

u2(t) + Is(t)

VI

− nx3(t)

IS(t) = IS1 · x1(t) − IS2

(1)

In the mathematical description the nomenclature given

in Table I is adopted. Parameter values for a person with

impaired insulin secretion and insulin resistance are listed

in Table II.

The output, blood glucose concentration y = x1, can

be influenced by the insulin infusion rate u2 and/or by

the glucose infusion rate u1.

III. PREDICTIVE CONTROLLER DESIGN

For controller design, the model (1) has been linearised

at basal state and time-discretised with sampling-time
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TABLE I

NOMENCLATURE OF THE MODEL.

State Explanation Unit

x1 plasma glucose concentration mmol/l
x2 insulin concentration (remote compart.) 1/min
x3 free plasma insulin concentration mU/l

Parameter Explanation Unit

G0 basal plasma glucose mmol/l
I0 basal plasma insulin mU/l
IS endogenous insulin secretion mU/min
u1 rate of exogenously infused glucose mmol/min
u2 rate of insulin infusion mU/min
VG glucose distribution space l
VI insulin distribution volume l
P1 glucose effectiveness factor 1/min
P2 delay in insulin action 1/min
n fractional disappearance rate of insulin 1/min

TABLE II

MODEL PARAMETERS FOR 70 KG BODY WEIGHT.

Parameter Value Unit

G0 4.5 mmol/l

I0 15 mU/l

VG 12 l

VI 12 l

n 0.09 1/min

P1 2.8 1/(102 min)

P2 2.5 1/(102 min)

P3 13 l/(106 min2 · mU)

IS1 1.6 (mU · L)/(mmol · min)

IS2 6.0 mU/min

ts = 5min. Fig. 1 depicts the linear model whereas
the paths from the control signals to the blood glucose

are described by linear pulse transfer functions. Note

that both control signals are limited for technical reasons

(0 ≤ u1 ≤ 9.25mmol/min, 0 ≤ u2 ≤ 30U/h). The
model without the constraints can be written as

y(k) =
q−1B1(q

−1)

A(q−1)
u1(k) +

q−1B2(q
−1)

A(q−1)
u2(k)

+
C(q−1)

(1 − q−1)A(q−1)
v(k)

(2)

where A,B1,B2 and C are polynomials in the delay oper-

ator q−1. The term q−1 describes an one step input-output

delay. Measurement noise and disturbances are described

by the last transfer function term of Eq. (2) with the white

noise input v(k). The polynomial C can be treated as

design parameter which influences the sensitivity of the

model-based predictive controller with respect to noise.

Including the term (1 − q−1) into the noise/disturbance
path of the model allows the description of piecewise

constant disturbances and leads to integral control of the

predictive controller.

The applied discrete-time predictive control scheme is

depicted in Fig. 3. At time instant kts the N -step-ahead
blood glucose concentration ŷ(k + N |k) is estimated.
The model-based prediction is a function of the current

and future control signals û1(i|k), û2(i|k), k ≤ i ≤
N −1 and relies furthermore on the current measurement
y(k) and past observations of the output and control

q−1B1(q
−1)

A(q−1)

q−1B2(q
−1)

A(q−1)

C(q−1)

(1 − q−1)A(q−1)

y(k)

v(k)

u1

u2

Fig. 1. Transfer function model used for controller design with the
control signals u1 (glucose infusion rate) and u2 (insulin infusion
rate) as well as the white noise input v. Output is the plasma glucose
concentration y.
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Fig. 2. Predictive control scheme.

signals. For simplifying the predictive controller it is

assumed that

û1(k|k) = û1(k + i|k), i = 1 . . . N − 1 (3)

û2(k|k) = û2(k + i|k), i = 1 . . . N − 1 (4)

The control signals û1(k|k) and û2(k|k) are determined
by an optimiser and applied to the infusion pumps. The

optimiser aims at minimising a cost function J taking the
control signal constraints into account. The chosen cost

function is defined as

J =
1

2
(r(k + N |k) − ŷ(k + N |k))2

+
1

2
γ1û1(k|k)2 +

1

2
γ2û2(k|k)2

(5)

where r is an online adapted reference trajectory which
leads the blood glucose concentration towards a normo-

glycaemic level in a fast and smooth fashion. The cost

function describes the control effort and gives a measure

how far the N -step-ahead prediction of the BS level
is away from the reference trajectory. Weighting of the

control effort is achieved by the positive constants γ1 and

γ2. Note, that the inclusion of the control effort in J is
necessary in order to avoid an administration of glucose

and insulin at the same time by the controller.
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The N -step-ahead minimum variance prediction can be
calculated as follows [7]:

ŷ(k + N |k) = yfuture + ypast (6)

yfuture = E1(q
−1)û1(k + N − 1|k)

+ E2(q
−1)û2(k + N − 1|k)

(7)

ypast =
F(q−1)

C(q−1)
y(k)

+
q−1(F1C−FB1)

A(q−1)C(q−1)
u1(k)

+
q−1(F2C−FB2)

A(q−1)C(q−1)
u2(k).

(8)

The term yfuture depends on future control signals

whereas ypast depends on the current and past BS mea-

surements and past control actions. The polynomials

E1,E2,F1,F2 and F are determined by the set of Dio-

phantine equations

B1(q
−1) = A(q−1)E1(q

−1) + q−NF2(q
−1)

B2(q
−1) = A(q−1)E2(q

−1) + q−NF2(q
−1)

C(q−1) = D(q−1)E(q−1) + q−NF(q−1).

Note that using (3) and (4) renders the prediction term

yfuture (7) to

yfuture = E1(1)û1(k|k) + E2(1)û2(k|k). (9)

The N -step-ahead prediction is therefore a linear function
of the interesting control signals. This leads to an analyt-

ical solution of the optimisation problem in the case of

no constraints. Quadratic programming can be used to

solve the optimisation problem if constraints are active.

The polynomial C must have its roots inside the unit

circle to make the predictor stable. From (8) it is clear

that the polynomial C defines the poles of a low-pass

filter applied to the noisy measurements. By choosing

“slower” poles, the controller becomes less sensitive to

measurement noise.

IV. RESULTS AND DISCUSSION

The predictive controller has been verified in simulation

with the nonlinear model (1). The aim was to bring

the BS level from an initial value of 10mmol/l to
a desired value of 5mmol/l in about 50min without
any hypoglycaemic situation (undershoot). A 3-step-ahead

prediction was used in the cost function with γ1 =
5 · 10−5 and γ2 = 2 · 10−6. The chosen polynomial

C = (z−0.8)(z−0.7)(z−0.6) guarantees good robustness
of the closed-loop system with respect to measurement

noise. In simulation a white measurement noise with a

standard deviation of 0.11mmol/l was injected.

Simulation results are shown in Fig. 3. On the top

axis of Fig. 3 the blood sugar level (solid line) and

its reference (dashed line) are shown together with the

measurements (crosses) and the 3-step-ahead prediction

(circles). The second axis shows the glucose infusion

rate u1 (solid line) and a pre-programmed additional

glucose infusion (dashed line) mimicking an intravenous

nutrition profile. The nutrition infusion is unknown for

the predictive controller and starts at 200minutes. Insulin

infusion rate u2 of the predictive controller is shown on

the bottom axis.
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Fig. 3. Simulations results: After 200 minutes an additional glucose
infusion is given mimicking an intravenous feeding.

The predictive controller performs sufficiently well.

The BS level follows the reference trajectory closely and

no hypoglycaemic situation occurs. Initially, insulin is

only given. In order to avoid an undershoot the controller

administrates subsequently glucose. The disturbance from

200minutes on causes only a short error in the prediction.

After ca. 25minutes the disturbance is observed so that

the prediction fits again to the real BS level. The slightly

elevated BS returns to the desired value.

V. CONCLUSION

The simulation results with the newly developed pre-

dictive controller are very promising. An undershoot of

blood sugar can be avoided even for fast settling times.

Future work will focus on the experimental identification

and validation of the model used for controller design and

clinical validation of the predictive controller.
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