oy
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Proposition 2 ([10]): Leta, b be two elements in a complete dioid
D.a" = b" is equivalent ta"b* = b*a* = a”.

B. Residuation Theory

In ordered sets, like dioids, equatiofis:) = b may have either no
solution, one solution, or multiple solutions. In order to give always a
unique answer to the problem of mapping inversion, residuation theory
[11], [12] provides, under some assumptions, the greatest solution (in
accordance with the considered order) to the inequglity) < b.
Definition 2 (Residuation): Letf : £ — F,with (&, <) and(F, <)
ordered sets. An isotone mappirfigs said to be residuated if for all
y € JF, the least upper bound of the subgete £|f(x) < y} exists
and lies in this subset. Itis denot¢ty), and mapping® is called the
residual off. Fig. 1. s and its south-east cone (grey).
If the considered ordered sets are complete didids, z — a ) =
(left-product bya), respectivelyiz,, : = — x 2 a (right-product by),
is residuated. Its residual is denoted By(«) = « % « (left-division
by a), resp.R: () = x¢ a (right-division bya). Thereforeq §  (resp.
z¢ a) denotes the greatest solutigof the inequality: 2 y < « (resp.
y 2 a = x). As left- and right-products are extended to matrices with o . o . -
entries in a complete dioid, left- and right-divisions are also extended’ m“'t'P'y'”Q a series: by 6 IS equivalent to shifting the values of
to matrices with entries in a complete dioid. the assomated.dater funct.|on by 1 Al dea
The following theorem gives a fundental link between Kleene star  Zxample 1. Consider the series= y5& v"4" & v"4” represented
and left-division (or right-division). by dots in Fig. 1. The south-east conesa$ colored in grey in Fig. 1.

. : ax . PR ! B
Theorem ([4]): LetD be a complete dioid and € D"*". Then, "® lm'n'”:grg re%fe_senéatlv_e Gﬁﬂ M 56 ||sq§;gz &*. This
AY¥ A €D andAd A € DP*?. Moreover,4¢ A = (A A)* and result could be obtained using the sintgalation rules of (1).

Axyd=(4A54). Besides
s =P @D s DA st
lll. TEG DESCRIPTION s=Pe e P ter P

F<0 E=1.2 k>3

thats = €9, ., 7"6"**). A simple interpretation of the variables

andé for daters is available:

« multiplying a series by ~ is equivalent to shifting the argument
of the associated dater function byl

The behavior of a TEG may be represented by transfer relations ) o
in some particular diais. Hereafter, such a dioid is biig presented, ' nerefore, the datef. associated with is given by

namelyM;y ~.é  (see[2], [9] for more details), and TEG descrip- —xif k<0
tion in this dioid is recalled. ds(k)=< 1ifk=1,2
4if k > 3.

A. Dioid M3 ~.6

Dioid M7; ~.6 isformally the quotient dioid o3[, ]| (the
set of formal power series in two commutative variablemnds, with ~ B. Linear State-Space Representation of TEG in M{; .6
Boolean codfcients and with exponents ), by the equivalence rela-
tioneRy < +* (671w = ~+*(671)"y. Dioid M?* ~.6 is com-
plete.

From now on, we only consider TEG with at most one place from a
transition to another transition. This assumption is not restrictive, as it
- . o is always possible to transform any TEG in an equivalent TEG with at
AsM;. 7.6 is aquotient dioid, an element d#},, .4 most one place from a transition to another transition.

may admit several representativesiifty. 4]. The representative which 11,4 dynamics of a TEG may be captured by associating each tran-
is minimal with respect to the number of terms is called the minimug]tion with a series € M?* ~.6 , whered, (k) is debned as the

. in fe y
representative. o _ ) ) time of bring % of the transition. Therefore, for TEG, is a shift oper-
A simple geometrical interpretath of the previous equn{algrlce '®-ator in the event domain, where an event is interpreted alrthg of
lation is available in the, §)-plane. Consider a monomiaf's® € e yransition, and is a shift operator in the time domain.

B[[~. 8]} its south-east cone is Heed 35{(}‘"* O > & a”df_/ <t The transitions of a TEG are divided into three categories:
The south-east cone of a seriedsifiv, 6] is debned as the union of the

" ) - X  state transition$zi, ..., x,): transitions with at least one input
south-east cones associated with the monomials composing the con- place and one output place;
sidered series. For two elemenisands: in B[[v. 8], siRs: (ie.s1 input transitiongu; . . . ., u,): transitions with at least one output
ands; are equal ilM?;  ~,§ )is equivalentto the equality of their place, but no input places;
south-ea_st cones. Dirteconsequences of the previous geometrical in- output transitionsy . .. . , 4., ): transitions with at least one input
terpretation are: o ; place, but no output places.
* simplipcation rules inM?77 v, 6 Under the earliest functioning rule (i.e., state and output transitions

bre as soon as they are enabled), with respect to a place with initially
m tokens and holding time the ifduence of its upstream transition on
its downstream transition is a positive shift in the time domaintohe

units and a negative shift in the event domaimo®vents. The com-

f)/k ) A’/,I — A’/nwin(:k‘,l:) and bk D (Sl — 6111ax(k‘/) (1)

« asimple formulation of the order relation for monomials

A6t <A e > and £ < E plete shift operator is coded by the monomj&ist in A& ~. 6
Let us consider the place upstream from transitioand downstream
The dater canonically associated with the sesi@s A7y ~. 6 from transitior ;, the ifduence of transition; on transitiory; is coded

is the unique non-decreasing functidn: Z — ZU {—oc, +c} such by the monomialf;; in M7} ~,6 debned byf;; = ~™J§™
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Proposition 5: Considers and s, two causal and periodic series

with
e s=pggrtandr = 4757,
* S0 = po b qorg andro = 77067

Pr.,(s) is causal and periodic and, i is not a polynomial, then

J(Pr;’xo(s)) = o(s).

1971

Proof: For causality, the previous result is obvious. Therefore,

only periodicity is considered in the following. #f or s, are polyno-
mials (i.e.,r = 0,7 = 0, = 0,0r7 = 0), Pr] (s) is also a

polynomial and the proposition holds. Thus, only the non-degenerated

case is considered; 7, vy, andr, are greater than 0.

On the one hand, the periodicity ef determines the structure of

Ko,

Koy = Kpg U U Ko .; with Koy 5 = {a+ jrola € Ky }

J20

Ky, (resp.Kq,) denotes the set of-discontinuities ofo (resp.qo).
On the other hand, the periodicity @implies the periodicity ofl,

K 2 0.Vk > K, ds(k+v) =7+ ds (k).

Next, consider’ € N such thath” = min K, » > K andk >

K', according to Prop. 4

dpr;‘r’o(s) (k+rvwo) =do (k) with &' = Ilenltv; N <k+rvt. (4)

Furthermorek > K' = k+wvwvy > K'+vw and sincel’ € K,
K +vuyy € K, too, i.e.

dprzo(j)(l(’ + v = A (K' 4 viy). (5)

k > K' combined with (4) and (5) leads to

dPrlo(S)(k +ow) =d (k) 2 dPr;’O(s)(\K, + vg)
>d(K + vig).

Itimpliesk’ > K’ + vy = min K, j+,. Then

1/
k= max < k+rvm}
it a0

max {{l+ vl +vvo < k+vio}

103

€ls

=wvwy + kwith k = max |l <k}

e iz 'qu,j

Hencek > K’ > K andk € K., and by using periodicity of
dP'ZU(S)(]" +vy) = ds(k') =ds(vva + ]:) = ds(]:‘,) + T

According to Prop. 4, sincé = maxex, {I|l < k}, ds(k) =
dprzo(q) (Iv), then

dpry (o) (k +vvo) = dpry () (k) + T

ConsequentlyPr;, (s) is periodic and

T = 2

o (Pri (s) = o = a(s)
[ ]
Example 3:Let so = v6'° & 176 (+76%)* ands = 6(~26%)".
Then,K,, is equal to{1, 3k with k > 0} andPr{ (s) is equal to
76 D(7*8°D06'%)(776'%)" . InFig. 3, the series, so andPr?, (s) are

Fig. 3. Representation af, (dashed line)s (continuous Iine)PrZU (s) (dots),
andk’,, (dotted line).

represented in thigy, §)-plane. As expected (see Prop. 5), the through-
puts ofs andPr]_ (s) are both equal to 0.4, however the periodicities
are differenty”6° for s buty°5'* for Prl, (s).

The aim of the following propositions is to characterize the series
Pr;,(s) as the optimal solution of a problem conserving the set of
~y-discontinuities ofso. First, some important properties Bf., are
proven.

Proposition 6: Given a series, in M7,y
closure.

Proof: Obviously,Pr;, is isotone (i.e.s1 = s2 = Pri, (s1) =
Pry,(s2)). Besides, due to the idempotencydof

Prl

<o Is adual

v, 6

= .,/\/l (,1’:[[/" (5]], s PrZO (.5) — @ ’ykéds(k») o @ ,yl\‘éd,;(k)
kEZ kEK s
=s

Therefore¥s € MZ7 v, 6 . Prl,(s) < s or equivalentlyPr], <
Id. It remains to show thalr], is a projection (i.e.Pr{, o Pr{, =
Pr.,). According to Prop. 4, fok € K.,, we havedprzo(s)(k‘) =
ds(k). Thus

y . Aoy 5y (R
Prl, (Pri,(s)) Fo

@

kEK .
kds(k
- @
KEK <,

= Pr;'“ (s)

[ |

Second, an interpretation, in termsefliscontinuities, of the image
of they-projection ontosy, Im(Pr}, ), is presented.

Proposition 7: Given a seriesg in M7, ~,6 ,Im(Pr{ )isthe
setof all series € MY, ~,6 having a set of-discontinuitiesC,
included inkC,, .

Proof: Onthe one hand, considesuch thatC; C K, . Then, as
Ke CKag CLis=@rex,, ~k§4:(K) (see Prop. 3). Consequently,
s = Pr;’/o (s) ands € Im(PrZU).

On the other hand, considere Im(Pr}, ), then there exists' such
thats = Pri (). Thus,s = @®,cx, +*8+ (%) and, according to
Prop. 3K, C K, . [ |
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The following proposition presents an interesting result for dual clot}; < CA* § CA* & Ay X CA* { CA". Clearly, CA* § CA™ is

sures.
Proposition 8: Consider a dual closurg on a dioidD and an ele-
ments € D. ¢(s) is the greatest solution of

r=s 6
{.T, €lm(a)’ ®)

a solution. Therefored,s = CA* § CA*. ]
Remark 2: This problem can be rephrased as an optimal feedback
control problem®nd the greatest feedbadk from state to state pre-
serving the perturbation-output transfer function matrix. Formally, this
is equivalent tdonding the greatest feedbagksuch thatt' (A F)* <
CA* (see [15]).
Prop. 11 is combined with the-projection onto matrices to obtain

Proof: As¢ = 1d, ¢(s) is a solution of (6). Consider a solution 4 TEG differing from the original TEG only in the holding times. For

x of (6), asz € Im(e), r = ¢(x) < s. Besides, a® is isotone,
xr = olx) < o(s). [ |

the state-matrixd, a coebcient 4;; represents the ffuence of tran-
sition x; on transition;. According to Section lll, consider the place

Finally, combining the previous propositions (Prop. 6, 7, 8) leadgstream from transition; and downstream from transitian , A;; is
to the interpretation oPr (s) as the greatest solution of a problempe monomiak™/ 677 wherem,; is the initial number of tokens in the

preserving the set of-discontinuities ofs, .

Proposition 9: Consider two series and sy in MJ7 ~,6
Pri,(s) is the greatest series less than or equal &md having a set
of v-discontinuities included in the set efdiscontinuities ofg, K, ,
i.e.,Pr], (s) is the greatest solution of

x2S
Ke CK,,

Proof: Consider a series € M?; ~.5 .According to Prop.
7,x € Im(Pr.,) is equivalent tdC. C K. Therefore

r <5
z € Im{Prl)

s/

r=<s
{ic, CKy 7 ™
As Pr, is adual closure (see Prop. &)}, (s) is, according to Prop.
8, the greatest solution of (7). [ |

The previous proposition is extended to matrices.

Proposition 10: ConsidetS andSy in M%7 ~,6 ™", Pri, (S)
is the greatest element jfr$? ™" |ess than or equal t6
such that the set of-discontinuities of an entry dr; () isincluded
in the set ofy-discontinuities of the corresponding entry%f.

s 6

place and; is the holding time of the place, hendé,,, = {m;}.
Furthermore, conserving the places and their initiaftkings (i.e., con-
straint of the considered problem) is equivalent to maintaining the set
of ~-discontinuities in comparison to the one of the initial system. Con-
sequently, the problem of holding time maximizatisnto bnd the

greatest solutionl’ € M%< ~,5 " " of
A < Apy
Vi Ka =Ka, C)
15

Next, we show that, witht s = C A", C' A", the previous problem

comes down tending the greatest solutio’ € M&r  y,8 "
of
A< Ay
Viij Kar CKa, - 9)
i :

According to Prop. 9 and Prop. 10, (9) admits,: = Pr’ (4./) as
the greatest solution. We check thht,, is a solution of (8). Indeed,
as the entries oft are monomialsk’ 4, ; is either empty or a singleton.
If Ka,, =0, thenk, = K.a,;. Otherwise K 4, is a singleton.

opt,ij

Proof: As(Pry (8))ij = Pris,, (S:;), theresultis an obvious As the~-projection onto a series is a dual closuse, > A leads to

consequence of Prop. 9. ]

V. HOLDING TIME MAXIMIZATION

In this section, a method to obtain the greatest holding time while
preserving the input-output and perturbation-output transfer functi

matrices is introduced. First, wedk for the greatest state-matrib.s

greater than or equal td and preserving the input-output and per-(
turbation-output transfer function matrices. Formally, this amounts to

Pnding the greatest state-mattiq; such thatds = A, CAYB =
CA*B,andCA;;, = CA*Y.

Proposition 11: Consider a TEG represented by matric€sA. B3),
the greatest state-matrik,; such thatdy; > A, CA;B = CA™B,
andC Ay, = CA™ is

Ay = CA Y CA"

Siirthermore, a&’ 4,

Aopt = Pri(A) = A. Therefore,d,;; # = implies Aopei; # <. In
terms ofy-discontinuitiesfCa,; # 0 impliesk 4 # (. Then

opt.ij

I ¥a K:Aopt” C /\41]

; isasingletonk4,, .. = K4,,. Consequently,

as a solution of (8) is a solution of (9., is the greatest solution of

8).

Therefore, the greatest state-matrix modifying only the holding
times and preserving the perturbation-output transfer function matrix
is A.,:. Besides, the initial system and the system after holding time
maximization have the same input-output behavior and the same
response in case of perturbations.

Example 4: Consider the system presented in Ex. 2, the calculation
is done with the C++ library described in [14], and the source code is
available in [16]. They-projection onta4 is applied toC'A* § C'A™.

For example(C'4* % CA* )45 = 67 ' (+?6'%)" andA4s = %6 leads

. . . . to
Proof: Preserving the perturbation-output transfer function

matrix implies preserving the inpautput transfer function matrix:

CAy = CAY = CAB = CA”DB. Therefore, the problem is

to bnd the greatest state-matrik,; > A such thatC' 43, = CA”.
As Ay = A impliesCAy, = C'4", it is equivalent tobnd the
greatest state-matridas such thatd,, = A andC'Ay, < CA4”.
If Ay = A, thenAdy, = A™. Thus, 43, = A*A%, (see Prop.
2) andCA}, <X CA" & (CA*A}, < CA*. Using residuation

theory, CA* Ay, < CA® & A}, <X CA™ % CA™. Finally, ac-

— )’,2 {59

(Pr(CA" §CA™)),, = Pri,, ((CA"§CA")is)

The complete solution is

A =Pri(CAT{CAY)

cording to Th. 2C'A* § C'A” is a star, then, according to Prop. 1,



