
r e s p e c -

t i v e l y . M o r e o v e r , i s c o m m u t a t i v e a n d i d e m p o t e n t (

) , i s d i s t r i b u t i v e w i t h r e s p e c t t o , a n d i s a b s o r b i n g f o r

.

T h e o p e r a t i o n i n d u c e s a n o r d e r r e l a t i o n o n , d e Þned by

.
Endowed with these operations, the set of square matrices with entries
in a complete dioid is also a complete dioid.
Definition 1: A closure (resp. dual closure) mappingis an isotone

(i.e., order-preserving) projection (i.e., ) from a dioid into
itself, greater than or equal to (resp. less than or equal to) the identity
mapping , i.e., , (resp. ).

The following theorem gives the least solution to some implicit equa-
tions in complete dioids. It plays a fundamental role for the study of
TEG behavior under the earliest functioning rule.
Theorem 1 (Kleene Star Theorem): The implicit equation

deÞned over a complete dioid admits as the least solution
with
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Proposition 2 ([10]): Let be two elements in a complete dioid
. is equivalent to .

B. Residuation Theory

In ordered sets, like dioids, equations may have either no
solution, one solution, or multiple solutions. In order to give always a
unique answer to the problem of mapping inversion, residuation theory
[11], [12] provides, under some assumptions, the greatest solution (in
accordance with the considered order) to the inequality .
Definition 2 (Residuation): Let , with and

ordered sets. An isotone mappingis said to be residuated if for all
, the least upper bound of the subset exists

and lies in this subset. It is denoted , and mapping is called the
residual of .

If the considered ordered sets are complete dioids,
(left-product by ), respectively (right-product by ),
is residuated. Its residual is denoted by (left-division
by ), resp. (right-division by ). Therefore, (resp.

) denotes the greatest solutionof the inequality (resp.
). As left- and right-products are extended to matrices with

entries in a complete dioid, left- and right-divisions are also extended
to matrices with entries in a complete dioid.

The following theorem gives a fundamental link between Kleene star
and left-division (or right-division).
Theorem ([4]): Let be a complete dioid and . Then,

and . Moreover, and
.

III. TEG DESCRIPTION

The behavior of a TEG may be represented by transfer relations
in some particular dioids. Hereafter, such a dioid is brießy presented,
namely �� �� (see [2], [9] for more details), and TEG descrip-
tion in this dioid is recalled.

A. Dioid �� ��

Dioid �� �� is formally the quotient dioid of (the
set of formal power series in two commutative variablesand , with
Boolean coefÞcients and with exponents in), by the equivalence rela-
tion . Dioid �� �� is com-
plete.

As �� �� is a quotient dioid, an element of �� ��
may admit several representatives in . The representative which
is minimal with respect to the number of terms is called the minimum
representative.

A simple geometrical interpretation of the previous equivalence re-
lation is available in the -plane. Consider a monomial

, its south-east cone is deÞned as and .
The south-east cone of a series in is deÞned as the union of the
south-east cones associated with the monomials composing the con-
sidered series. For two elementsand in , (i.e.,
and are equal in �� �� ) is equivalent to the equality of their
south-east cones. Direct consequences of the previous geometrical in-
terpretation are:

• simpliÞcation rules in �� ��

(1)

• a simple formulation of the order relation for monomials

The dater canonically associated with the seriesin �� ��
is the unique non-decreasing function such

Fig. 1. and its south-east cone (grey).

that . A simple interpretation of the variables
and for daters is available:

• multiplying a series by is equivalent to shifting the argument
of the associated dater function by1

• multiplying a series by is equivalent to shifting the values of
the associated dater function by 1

Example 1: Consider the series represented
by dots in Fig. 1. The south-east cone ofis colored in grey in Fig. 1.
The minimum representative ofin �� �� is . This
result could be obtained using the simpliÞcation rules of (1).

Besides

Therefore, the dater associated with is given by

B. Linear State-Space Representation of TEG in �� ��

From now on, we only consider TEG with at most one place from a
transition to another transition. This assumption is not restrictive, as it
is always possible to transform any TEG in an equivalent TEG with at
most one place from a transition to another transition.

The dynamics of a TEG may be captured by associating each tran-
sition with a series �� �� , where is deÞned as the
time ofÞring of the transition. Therefore, for TEG,is a shift oper-
ator in the event domain, where an event is interpreted as theÞring of
the transition, and is a shift operator in the time domain.

The transitions of a TEG are divided into three categories:
• state transitions : transitions with at least one input

place and one output place;
• input transitions : transitions with at least one output

place, but no input places;
• output transitions : transitions with at least one input

place, but no output places.
Under the earliest functioning rule (i.e., state and output transitions

Þre as soon as they are enabled), with respect to a place with initially
tokens and holding time, the inßuence of its upstream transition on

its downstream transition is a positive shift in the time domain oftime
units and a negative shift in the event domain ofevents. The com-
plete shift operator is coded by the monomial in �� �� .
Let us consider the place upstream from transitionand downstream
from transition , the inßuence of transition on transition is coded
by the monomial in �� �� deÞned by
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Proposition 5: Consider and two causal and periodic series
with

• and ;
• and ;

is causal and periodic and, if is not a polynomial, then
.

Proof: For causality, the previous result is obvious. Therefore,
only periodicity is considered in the following. If or are polyno-
mials (i.e., , , , or ), is also a
polynomial and the proposition holds. Thus, only the non-degenerated
case is considered:, , , and are greater than 0.

On the one hand, the periodicity of determines the structure of

(resp. ) denotes the set of-discontinuities of (resp. ).
On the other hand, the periodicity ofimplies the periodicity of

Next, consider such that and
, according to Prop. 4

(4)

Furthermore, and since ,
too, i.e.

(5)

combined with (4) and (5) leads to

It implies . Then

Hence and and by using periodicity of

According to Prop. 4, since ,
, then

Consequently, is periodic and

Example 3: Let and .
Then, is equal to and is equal to

. In Fig. 3, the series, and are

Fig. 3. Representation of (dashed line), (continuous line), (dots),
and (dotted line).

represented in the -plane. As expected (see Prop. 5), the through-
puts of and are both equal to 0.4, however the periodicities
are different: for but for .

The aim of the following propositions is to characterize the series
as the optimal solution of a problem conserving the set of

-discontinuities of . First, some important properties of are
proven.

Proposition 6: Given a series in �� �� , is a dual
closure.

Proof: Obviously, is isotone (i.e.,
). Besides, due to the idempotency of

Therefore, �� �� or equivalently
. It remains to show that is a projection (i.e.,

). According to Prop. 4, for , we have
. Thus

Second, an interpretation, in terms of-discontinuities, of the image
of the -projection onto , , is presented.

Proposition 7: Given a series in �� �� , is the
set of all series �� �� having a set of -discontinuities
included in .

Proof: On the one hand, considersuch that . Then, as
, (see Prop. 3). Consequently,

and .
On the other hand, consider , then there exists such

that . Thus, and, according to
Prop. 3, .
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The following proposition presents an interesting result for dual clo-
sures.
Proposition 8: Consider a dual closure on a dioid and an ele-

ment . is the greatest solution of

(6)

Proof: As , is a solution of (6). Consider a solution
of (6), as , . Besides, as is isotone,

.
Finally, combining the previous propositions (Prop. 6, 7, 8) leads

to the interpretation of as the greatest solution of a problem
preserving the set of-discontinuities of .
Proposition 9: Consider two series and in �� �� ,

is the greatest series less than or equal toand having a set
of -discontinuities included in the set of-discontinuities of , ,
i.e., is the greatest solution of

Proof: Consider a series �� �� . According to Prop.
7, is equivalent to . Therefore

(7)

As is a dual closure (see Prop. 6), is, according to Prop.
8, the greatest solution of (7).

The previous proposition is extended to matrices.
Proposition 10: Consider and in �� �� ,

is the greatest element in �� �� less than or equal to
such that the set of-discontinuities of an entry of is included
in the set of -discontinuities of the corresponding entry of.

Proof: As , the result is an obvious
consequence of Prop. 9.

V. HOLDING TIME MAXIMIZATION

In this section, a method to obtain the greatest holding time while
preserving the input-output and perturbation-output transfer function
matrices is introduced. First, we look for the greatest state-matrix
greater than or equal to and preserving the input-output and per-
turbation-output transfer function matrices. Formally, this amounts to
Þnding the greatest state-matrix such that ,

, and .
Proposition 11: Consider a TEG represented by matrices ,

the greatest state-matrix such that , ,
and is

Proof: Preserving the perturbation-output transfer function
matrix implies preserving the input-output transfer function matrix:

. Therefore, the problem is
to Þnd the greatest state-matrix such that .
As implies , it is equivalent toÞnd the
greatest state-matrix such that and .
If , then . Thus, (see Prop.
2) and . Using residuation
theory, . Finally, ac-
cording to Th. 2 is a star, then, according to Prop. 1,

. Clearly, is
a solution. Therefore, .
Remark 2: This problem can be rephrased as an optimal feedback

control problem:Þnd the greatest feedback from state to state pre-
serving the perturbation-output transfer function matrix. Formally, this
is equivalent toÞnding the greatest feedbacksuch that

(see [15]).
Prop. 11 is combined with the-projection onto matrices to obtain

a TEG differing from the original TEG only in the holding times. For
the state-matrix , a coefÞcient represents the inßuence of tran-
sition on transition . According to Section III, consider the place
upstream from transition and downstream from transition , is
the monomial where is the initial number of tokens in the
place and is the holding time of the place, hence, .
Furthermore, conserving the places and their initial markings (i.e., con-
straint of the considered problem) is equivalent to maintaining the set
of -discontinuities in comparison to the one of the initial system. Con-
sequently, the problem of holding time maximizationis to Þnd the
greatest solution �� �� of

(8)

Next, we show that, with , the previous problem
comes down toÞnding the greatest solution �� ��
of

(9)

According to Prop. 9 and Prop. 10, (9) admits as
the greatest solution. We check that is a solution of (8). Indeed,
as the entries of are monomials, is either empty or a singleton.
If , then . Otherwise, is a singleton.
As the -projection onto a series is a dual closure, leads to

. Therefore, implies . In
terms of -discontinuities, implies . Then

Furthermore, as is a singleton, . Consequently,
as a solution of (8) is a solution of (9), is the greatest solution of
(8).

Therefore, the greatest state-matrix modifying only the holding
times and preserving the perturbation-output transfer function matrix
is . Besides, the initial system and the system after holding time
maximization have the same input-output behavior and the same
response in case of perturbations.
Example 4: Consider the system presented in Ex. 2, the calculation

is done with the C++ library described in [14], and the source code is
available in [16]. The -projection onto is applied to .
For example, and leads
to

The complete solution is


